下载fetch_20newsgroups

文章讲述了如何解决从国外源下载twenty_newsgroups数据集慢的问题。建议将数据集压缩包存放在虚拟环境中的特定文件夹,然后修改twenty_newsgroups.py的下载源为本地路径。同时,可以更改环境变量SCIKIT_LEARN_DATA来指定数据解压位置,避免每次从网络下载。在PyCharm中运行代码后,数据集会自动解压并加载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载数据集压缩包

  • 国外源下载很慢,有时候甚至根本连接不到,推荐:下载地址
  • 下载的文件为:
    在这里插入图片描述
    将该文件存放在一个比较好找的位置。比如:放在自己的虚拟环境中,可以单独建立一个文件夹放在其中。
    在这里插入图片描述

更改相关配置

  • 更改下载源:
    1.找到twenty_newsgroups.py文件。路径一般为:你的虚拟环境\Lib\site-packages\sklearn\datasets。打开,并找到以下内容:
    在这里插入图片描述
    将下载路径注释掉,并将下载路径更改为自己的压缩文件的目录,比如我的是:
    在这里插入图片描述
    这个时候再下载数据的时候就会从压缩包中读取,并不会再从网络中区下载。缩进的时候记得用4个空格,不要用Tab键。
    2.更改数据集解压存储目录:
    在pycharm到入数据的时候需要先将压缩包数据解压,再将解压后的数据导入,这一步有默认值,可以不用配置,如果你想要自定义,可以操作这一步。
    1.找到base.py文件。一般路径为:你的虚拟环境\Lib\site-packages\sklearn。就是上个文件的上一级目录下。找到并打开它,第一个函数就是:
    在这里插入图片描述
    这个函数规定了从哪里获取数据。可以在这里修改,也可以更改环境变量,一般推荐更改环境变量,毕竟改源码不是太好的选择。
    2.设置环境变量
    点击计算机右键>属性>高级系统设置>环境变量>新建 设置:SCIKIT_LEARN_DATA,值就是存放压缩包的路径。
    在这里插入图片描述
    这个时候需要重启pycharm一下。这个时候所有需要准备的工作就已经结束了。

运行

在pycharm打开控制台 输入以下代码

from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all')

这个时候需要一些时间解压文件并加载数据。耐心等待一下。
在这里插入图片描述
等到出现输入符的时候,输入以下内容:
在这里插入图片描述
如果出现数据证明你已下载安装成功。查看一下的你的安装目录:
在这里插入图片描述
压缩包已经被删除,已经被替换为此文件。下次执行程序就会直接加载进来。

### 使用 `fetch_20newsgroups` 下载数据集 `fetch_20newsgroups` 是 Scikit-learn 提供的一个函数,用于加载著名的 20 类新闻组数据集。该数据集包含了大约 20,000 封来自 20 个不同主题的新邮件消息[^3]。 #### 函数参数说明 `fetch_20newsgroups` 的主要参数如下: - **subset**: 可选值为 `'train'`, `'test'`, 或 `'all'`,分别表示只加载训练集、测试集或全部数据。 - **categories**: 如果只想加载特定类别,则可以指定一个列表来过滤数据。 - **shuffle**: 是否打乱数据顺序,默认为 True。 - **random_state**: 随机种子,当 shuffle=True 时有效。 - **remove**: 指定要移除的内容部分(如头部、脚注等),默认为空元组 ()。 #### 示例代码 以下是一个完整的示例代码,展示如何使用 `fetch_20newsgroups` 来下载并查看数据: ```python from sklearn.datasets import fetch_20newsgroups # 定义需要加载的子集和类别 subset = 'all' categories = None # 设置为 None 表示加载所有类别 # 调用 fetch_20newsgroups 方法 news = fetch_20newsgroups(subset=subset, categories=categories, shuffle=True, random_state=42) # 输出基本信息 print(f"数据集中共有 {len(news.data)} 条记录") print(f"数据集包含的类别数: {len(news.target_names)}") # 查看前几条样本及其对应的标签 for i in range(5): print(f"\n第 {i+1} 条样本:") print("内容:", news.data[i][:100], "...") # 截取部分内容显示 print("类别:", news.target_names[news.target[i]]) ``` 如果遇到下载速度过慢的情况,可以通过设置自定义缓存路径加速下载过程[^5]。例如修改 `archive_path` 参数指向本地存储位置。 #### 解决下载缓慢的方法 为了提高下载效率,建议预先手动下载压缩包文件到目标目录下,并调整程序配置使其识别新地址。具体做法参见上述提到的手动设定路径方式[^2]。 --- ### 数据预处理的重要性 在实际应用中,原始文本通常需要经过一系列清洗与转换步骤才能被算法接受作为输入特征向量[^4]。这一步骤可能涉及去除停用词、分词化、构建 TF-IDF 向量等形式的操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值