自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

人工智能讲师分享前沿技术

人工智能大模型培训老师叶梓分享AI前沿知识

  • 博客(1203)
  • 资源 (1)
  • 收藏
  • 关注

原创 大模型培训讲师叶梓大模型技术、商业图景与趋势培训提纲

深入了解大语言模型的最新发展动态及应用场景。掌握大语言模型在日常工作中的应用方法与技巧。学会利用大语言模型提升工作效率与质量。

2025-03-28 14:12:54 674

原创 人工智能培训讲师叶梓Dify培训:快速构建AI应用的低代码平台讲义

Dify平台的起源与发展历程Dify平台在AI应用开发领域的定位与优势Dify平台的架构与技术原理详解。

2025-03-19 16:30:00 910

原创 大模型培训讲师叶梓LlamaFactory模型微调培训提纲

叶梓,上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。

2025-03-18 16:15:00 1704

原创 AIGC大模型讲师培训老师叶梓简历及人工智能生成内容(AIGC)技术发展与产业机遇提纲

长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,牵头多个省级、市级行业智能化信息系统的建设,主持设计并搭建多个省级、市级行业大数据平台。研发智能服务系统,包括:元宇宙与虚拟数字人、基于人工智能的内容生成(AIGC)、基于NLP技术的对话系统、基于深度学习的图像识别系统、基于智能推理的行业推荐系统。为解决超量数据的存储与计算的问题,搭建了存储全市数据的云计算平台,并在其上进行了基于大数据的分析和挖掘工作。作为项目总负责,负责项目管理、产品研发、系统分析、技术指导、算法指导等。

2024-09-18 16:13:35 847

原创 人工智能大模型讲师培训老师叶梓介绍及多模态大模型原理与实践提纲

通过本次培训,拓展对多模态AI应用领域的视野,帮助团队聚焦AI赋能创新突破,提升对AI服务的技术认知与理解,更好地助力业务智能化业务建设。

2024-07-12 16:00:00 731

原创 人工智能培训讲师咨询叶梓介绍及智能医疗技术与ChatGPT临床应用三日深度培训提纲

叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,牵头多个省级、市级行业智能化信息系统的建设,主持设计并搭建多个省级、市级行业大数据平台。参与国家级人工智能课题,牵头上海市级人工智能示范应用课题研究。

2024-05-08 16:11:22 1066

原创 人工智能讲师AI讲师大模型讲师叶梓简历及大语言模型技术原理与实践提纲

本课程旨在通过实际案例展示ChatGPT、ChatGLM、Langchain等相关大语言模型的具体应用场景及实践技巧,从而帮助学习者深入了解和掌握大语言模型的概念和更广泛的应用,深入理解其工作方式,包括其基础知识、核心算法和实现方式,掌握其在各行业领域中的应用情况等。该课程适合于对大语言模型技术感兴趣的学习者,从初学者到进阶者均可受益。经过本课程的学习,获得相关技术实战经验,通过一系列的实践案例提高利用大模型解决实际问题能力。

2024-02-21 16:30:38 1676

原创 AI人工智能大模型讲师叶梓简历及《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

本课程介绍了chatGPT相关模型的具体案例实践,通过实操更好的掌握chatGPT的概念与应用场景,可以作为chatGPT领域学习者的入门到进阶级课程。1、指示学习(Instruct Learning)6、Batch Norm与Layer Norm。2、Transformer中的block。1、你需要的仅仅是“注意力”7、chatGPT的应用领域。8、chatGPT引发的讨论。5、位置编码(抛弃RNN)4、从人类反馈中RL的思路。3、有监督微调(SFT)5、奖励建模(RM)

2023-12-30 13:26:21 1033

原创 人工智能AIGC培训讲师叶梓简历及AI强化学习培训提纲

强化学习是当前最热门的研究方向之一,广泛应用于机器人学、电子竞技等领域。本课程系统性的介绍了强化学习(深度强化学习)的基本理论和关键算法,包括:马尔科夫决策过程、动态规划法、蒙特卡罗法、时间差分法、值函数逼近法,策略梯度法等;以及该领域的最新前沿发展,包括:DQN及其变种、信赖域系方法、Actor-Critic类方法、多Agent深度强化学习等;同时也介绍大量的实际案例,包括深度强化学习中最著名的工程应用:Alpha Go。

2023-12-06 14:16:05 1506

原创 人工智能ai大模型培训师专家讲师叶梓介绍及ChatGPT提纲

叶梓,长期负责城市信息化智能平台的建设工作,牵头多个省级、市级智能化信息系统的建设,主持设计并搭建多个行业省级、市级大数据平台。参与国家级行业人工智能课题研究,牵头市级行业人工智能课题(智能化医疗产品、智能化场景应用)研究。带领团队在相关行业领域研发多款人工智能创新产品,成功落地多项大数据、人工智能前沿项目。参与国家级、省级大数据技术标准的制定,曾获省部级以上的科技创新一等奖。8、chatGPT的应用领域。9、chatGPT引发的讨论。2、 GPT的内部架构。5、 GPT的应用场景。6、奖励建模(RM)

2023-03-25 16:42:58 2726

原创 AI工智能讲师叶梓培训简历及提纲:AI人工智能之基于人工智能的内容生成(AIGC)简历提纲

AIGC并不是一个全新的概念,它最早出现在深度学习模型“对抗生成网络”GAN的应用中,被誉为“21世纪最强大的算法模型之一” ,后续发展起来的扩散模型,以及自然语言领域BERT、GPT等都是典型的AIGC模型。

2023-02-05 20:25:56 1441

原创 大数据人工智能培训讲师老师:叶梓简介 人工智能讲师ai讲师大数据讲师人工智能老师

上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入某大型软件上市公司从事大数据、人工智能等技术相关工作,曾先后作为技术经理或总工程师,负责大型信息平台、市级信息平台的建设工作,并参与省级信息平台的建设;主持制定了包括多份信息化工程标准。在大数据应用、人工智能等方面都有着丰富的经验。个人助理QQ:526346584案例及课程:主要课程:《数据分...

2019-09-11 09:45:18 11671 1

原创 人工智能兼职讲师ai讲师强化学习讲师叶梓老师《强化学习》课程介绍及提纲

2018年11月29日,叶梓老师在线直播课《强化学习》第一期正式开班。这是人工智能之机器学习中除深度学习之外另一门经典课程,是AI必修之课。人工智能的重要领域——强化学习当前的机器学习算法可以分为3种:有监督的学习(Supervised Learning)、无监督的学习(Unsupervised Learning)和强化学习(Reinforcement Learning)...

2018-12-27 10:39:34 1218 1

原创 AI兼职讲师人工智能兼职讲师叶梓老师 机器学习与深度学习培训提纲

课程时长】6天(6小时/天)【课程简介】人工智能的浪潮正在席卷全球,各种培训课程应运而生,但真正能让学员系统、全面掌握人工智能深度学习知识点,并且能学以致用的实战课程并不多见。本课程包含机器学习、深度学习的重要概念及常用算法(决策树、关联规则、聚类、贝叶斯网络、神经网络、支持向量机、隐马尔科夫模型、遗传算法、CNN、RNN、GAN等),以及人工智能领域当前的热点。通过6天的系...

2018-12-27 10:36:10 1124 1

原创 狼人杀中的智能策略:解析AI如何理解复杂社交游戏

在社交推理游戏中,AI的表现逐渐接近人类水平。《Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game》这篇文章通过狼人杀游戏的实验,展示了新的AI方法如何在复杂社交环境中实现高效决策。

2025-04-29 20:00:00 925 1

原创 阿里Qwen3 8款模型全面开源,免费商用,成本仅为 DeepSeek-R1 的三分之一

阿里 Qwen3 开源八款模型,涵盖 0.6B 至 235B 不同参数规模,兼具混合专家及密集模型优势,灵活适配多样需求。以 Qwen3-235B-A22B 为例,仅激活 22B 参数,性能便远超同类顶尖模型。其经 36T 海量数据预训练,覆盖 119 种语言方言,通过强化学习等训练,指令遵循与灵活互动等能力大幅提升,且开源协议宽松,免费商用。

2025-04-29 15:27:36 1210

原创 用自然语言指令构建机器学习可视化编程流程:InstructPipe 的创新探索

在当今数字化时代,机器学习和人工智能技术正逐渐渗透到生活的各个角落。然而,对于许多非专业开发者来说,构建机器学习(ML)应用仍是一个充满挑战的任务。传统的可视化编程工具虽然降低了编程门槛,但用户仍需从空白界面开始,手动选择和连接节点,这对于初学者来说并不友好。InstructPipe 是一个由谷歌研究团队开发的人工智能助手,旨在通过自然语言指令帮助用户快速构建机器学习(ML)视觉编程流程。该工具通过两个大型语言模型(LLM)模块和一个代码解释器实现,能够显著减少用户在构建流程时的交互次数。

2025-04-21 21:30:00 913

原创 FramePack:让视频生成更高效、更实用

视频生成领域一直面临着两大挑战:遗忘问题和漂移问题。遗忘问题指的是模型在生成过程中难以记住早期内容,导致时间连贯性受损;而漂移问题则是指随着生成时间的延长,视觉质量会因累积误差而逐渐下降。为了解决这些问题,斯坦福大学的研究团队提出了一种名为FramePack的新技术。

2025-04-21 17:19:40 988

原创 昆仑万维Skywork-OR1凭32B硬刚DeepSeek 671B,彻底开源,免费商用

该系列包括两个通用推理模型——Skywork-OR1-7B-Preview 和 Skywork-OR1-32B-Preview,以及一个专注于数学领域的专项模型 Skywork-OR1-Math-7B。通过 Avg@K 指标,我们可以看到 Skywork-OR1-32B-Preview 在数学推理任务中表现优异,与参数规模高达 671B 的 DeepSeek-R1 模型持平,展现了其卓越的性价比。Avg@K 指标通过测量模型在 K 次独立尝试中的平均表现,减少了随机性的影响,增强了结果的可靠性。

2025-04-16 11:30:00 559

转载 如何让 Cursor 更好的理解项目

让 cursor 输出项目结构,来更好地理解大模型,有一些软件也能做到这种效果,比如 RepoPrompt。如果我们想在 Cursor 中实现也可以。这脚本是用来输出这样的结构,方便后续大模型的理解项目和携带项目结构给大模型。两个脚本内容太多,点击阅读原文来去获取脚本内容。一定要选择 Agent 模式。然后输入需求后, Cursor 会自动执行脚本,并输出项目结构的 MDC 文件。这里的 alwaysApply 设置为 true,每次请求都会判断是否需要更新项目结构。转自公众号:读书不多。

2025-04-09 20:43:41 235 1

原创 140亿参数AI编程神器“DeepCoder”开源

大模型训练平台Together AI和智能体平台Agentica,联合开源140亿参数炸场的AI编程神器‘DeepCoder’,2.4万道实战题打磨,64K超长逻辑解析能力,代码生成效率提升50%,调试准确率吊打国际大厂!零基础用户输入需求即可生成完整代码。

2025-04-09 16:02:40 686

原创 探索大模型奖励建模的推理时间扩展性:DeepSeek与清华的最新研究成果

在人工智能领域,大模型(Large Language Models,LLMs)的发展日新月异,它们在自然语言处理任务中的表现令人瞩目。然而,如何进一步优化这些模型的性能,特别是在奖励建模(Reward Modeling,RM)方面,一直是研究的热点。最近,DeepSeek与清华大学的研究者们联合发表了一篇题为《通用奖励模型的推理时扩展》(Inference-Time Scaling for Generalist Reward Modeling)的论文,提出了一种新的方法,通过增加推理计算资源来提升通用奖励模

2025-04-07 17:00:00 1128

原创 Llama4开源王炸!Scout&Maverick双剑合璧

最强多模态模型Llama 4开源了!Scout和Maverick双剑合璧,直接让同行"原地罚站"!别人处理长文本像在搬砖,Scout一招搞定;Maverick推理能力开挂,性价比高到让友商集体喊"救命"!

2025-04-07 12:50:02 267

转载 保姆级教程~本地微调DeepSeek-R1-8b模型

利用特定领域的数据集对已预训练的大模型进行进一步训练的过程。它旨在优化模型在特定任务上的性能,使模型能够更好地适应和完成特定领域的任务。其中最重要的是超参数(如学习率、批次大小和训练轮次)调整优化。转成大白话就是调整大模型中一些参数的值,使其在特定数据集上表现更优秀。

2025-04-02 12:00:00 900

原创 大模型的推理能力:结构比内容更重要

在人工智能领域,大模型的推理能力一直是研究的热点。这些模型通过复杂的逻辑链条来解决复杂的数学和编程问题。然而,如何让大模型有效地学习这种长链条的推理(Long CoT)仍然是一个未解之谜。最近的一项研究发现,通过一种数据高效和参数高效的方式,可以让大模型学会长链条推理,而且推理的结构比推理步骤的具体内容更为重要。

2025-04-01 16:45:00 1206

原创 效率革命!大模型推理速度飙升的秘密!

在人工智能领域,大模型 如今已成为研究热点。这些模型凭借其庞大的参数规模,在处理各种任务时展现出了惊人的能力。然而,随着模型规模的不断扩大,一个关键问题逐渐凸显:如何让这些大模型更高效地进行思考?最近的一项研究综述《A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond》为我们提供了深入的见解。

2025-04-01 10:45:00 1340

原创 脑启发式AI Agent:解锁人类大脑奥秘,迈向真正的通用人工智能(AGI)

相比之下,脑启发式agent架构涵盖了感知、规划、决策、行动、记忆、推理、反思、优化、情绪和语言等所有功能模块,展现出更全面的智能潜力。首先,对人类大脑的理解仍然有限,目前的研究主要集中在大脑皮层的中尺度区域,而对于更细粒度的神经连接和亚皮层区域的研究还不够深入。文章提出了一个脑启发式人工智能agent的架构,该架构基于大脑皮层的功能分区和连接网络。例如,图 1 展示了脑启发式代理中大脑区域的示意图,图中清晰标注了不同功能模块对应的脑区,如感知模块对应视觉皮层和听觉皮层,决策模块对应背外侧前额叶皮层等。

2025-03-24 20:00:00 658

原创 13年前的AlexNet代码公开,居然震撼科技界!

谷歌首席科学家 Jeff Dean 近日宣布,谷歌与计算机历史博物馆携手开源AlexNet(,并将长期保存这些代码。这一举措在科技界投下了一颗重磅炸弹。杰弗里·埃弗里斯特·辛顿(Geoffrey Everest Hinton),被誉为“神经网络之父”和“深度学习鼻祖”,是人工智能领域的传奇人物。他的贡献不仅推动了神经网络的发展,还为现代人工智能技术奠定了基础。

2025-03-24 09:10:56 930

原创 Command A:仅需两块 GPU 性能比肩DeepSeek-V3

在不同长度的上下文请求中,Command A 的 token 生成速率均优于 GPT-4o 和 DeepSeek-V3,无论是处理简短的任务还是长篇文档,都能迅速给出响应,确保企业高效运转。在多种语言的企业任务中,Command A 的胜率高于 DeepSeek-V3,尤其在阿拉伯语方言处理上表现突出,能够准确地根据用户所使用的方言进行回应,满足企业在不同地区的沟通需求。在实际应用中,Command A 可以帮助企业管理海量文档,快速提取关键信息,还能结合企业内部知识库,为客户提供个性化的智能服务。

2025-03-19 10:30:00 648

原创 中国视频生成重大突破,Open-Sora2.0低成本崛起

Open-Sora 2.0 是一款仅用 20万美元 成本训练出的商业级视频生成模型,参数规模达到 110亿。该模型在权威评测 VBench 中表现出色,与 OpenAI 的 Sora 等顶尖模型的性能差距大幅缩小,几乎追平。

2025-03-18 11:30:00 731

原创 人工智能培训讲师叶梓:如何使用Cline + DeepSeek实现自动编程

Cline+DeepSeek:Cline将自然语言转化为代码;DeepSeek生成逻辑严谨、注释清晰的代码。叶老师将带您快速掌握自动编程技术。

2025-03-17 16:30:00 1447

原创 人工智能讲师多模态讲师叶梓:多模态大模型培训介绍

多模态大模型的基本概念多模态融合的优势与意义发展现状与趋势当前多模态大模型的发展阶段未来发展趋势展望。

2025-03-17 11:30:00 1042

转载 375篇文献,深入探究推理大模型后训练技术

方法:包括链式思考(Chain-of-Thought)、树状思考(Tree-of-Thoughts)、蒙特卡洛树搜索(MCTS)等,这些方法通过分解复杂问题或迭代探索可能的输出来提高LLMs的推理能力。方法:讨论了多种强化学习方法,包括直接策略优化(DPO)、群体相对策略优化(GRPO)和近端策略优化(PPO)等,这些方法通过不同的策略来优化LLMs的行为,使其更符合人类偏好。强化学习的有效性:强化学习能够通过动态反馈优化LLMs的行为,使其更符合人类偏好,但需要处理复杂的奖励结构和高维输出。

2025-03-13 15:15:00 237

原创 谷歌突然开源Gemma 3,超满血版DeepSeek V3

Gemma 3是由 Google DeepMind 团队推出的大模型家族中的新成员,它在 Gemma 2 的基础上进行了多项改进和扩展。它是一款轻量级、高性能的多模态 AI 模型,单个 GPU 就能跑,轻松驾驭文本、图像、短视频。有更长的上下文处理能力(至少 12.8 万 tokens)以及更广泛的多语言支持。参数规模有 1B、4B、12B 和 27B 四种,开发者可依硬件和性能需求灵活选择,即便 270 亿参数的版本,也能在单块 GPU 上高效运行。它支持 35 种语言,满足各种场景需求。

2025-03-13 11:00:39 1426

原创 Evo2:AI生物学模型的突破性进展

Evo2 是由斯坦福大学、英伟达、Arc研究所、加州大学伯克利分校和加州大学旧金山分校的科学家联合发布的生物学大模型,其完整版包含 400亿参数,训练数据覆盖 12.8万个物种 的 9.3万亿个核苷酸。这一模型的发布标志着AI在生物学领域的重大突破,为基因组学、精准医学、药物研发和合成生物学带来了全新的可能性。传统的生物学研究依赖于实验方法和数据分析,但随着基因组学的快速发展,海量的基因组数据需要更高效、更智能的工具来处理和解读。Evo2的出现,正是为了解决这一问题。

2025-03-12 20:30:00 1176

原创 MedRAG:基于知识图谱推理的医疗辅助诊断模型

例如,图1展示了MedRAG的总体框架,其中知识图谱的构建模块通过疾病聚类和层次化聚合,将电子健康记录(EHR)中的疾病信息整合到知识图谱中。当患者的症状描述不足以支持明确诊断时,模型会根据知识图谱中的关键特征,生成针对性的后续问题,帮助医生进一步澄清患者病情。MedRAG的核心在于将知识图谱(KG)与RAG技术相结合,通过构建一个包含疾病关键诊断差异的四层层次化知识图谱,动态整合电子健康记录(EHR)数据库中的相似病例,并在大语言模型(LLM)中进行推理,从而实现更精准的诊断决策支持。

2025-03-12 11:30:00 964 2

转载 DeepSeek-R1技术笔记 (含图解和技术点介绍)

在选择阶段,递归选择最优子节点,当到达一个叶子结点时,若叶子结点不是终止节点,就创建其他节点,选择其一进行拓展,从拓展节点开始,进行模拟输出,直到游戏结束,根据模拟结果,反向传播更新当前序列,该方法的好处在于:可以在不训练模型的情况下,通过增加模型的推理时间,增强模型的推理性能。为此,为了让大语言模型在没有监督数据的情况下也能发展出推理能力,作者提出了DeepSeek-R1-zero,它在基座模型DeepSeek-V3-Base上应用了强化学习,实现了自我进化,产生了推理能力。

2025-03-11 12:06:18 466

原创 用大模型快速预测社会科学实验结果,开启高效研究新时代

斯坦福大学的研究团队,构建了一个包含70项全国代表性调查实验的档案库,这些实验涉及476种实验处理效应和超过10.5万名参与者。研究团队使用了公开可用的先进LLM——GPT-4,模拟这些实验中美国代表性样本的反应,并将这些模拟反应与实际实验结果进行对比。

2025-03-11 10:58:47 735

原创 阿里巴巴开源推理大模型QwQ-32B:以小博大,性能媲美DeepSeek-R1

今日凌晨,阿里Qwen团队震撼发布QwQ-32B推理模型,这是一款拥有320亿参数的“小巨人”,却能在消费级显卡上轻松运行,彻底打破大模型的硬件枷锁!

2025-03-06 20:04:34 697 1

原创 解密DeepSeek-R1如何做到低成本高效率

DeepSeek-R1在AI研究领域引起了广泛关注。与传统的AI模型不同,DeepSeek-R1不仅仅是一个渐进式的改进,而是一个具有重大飞跃的模型。它在推理任务上的表现接近OpenAI的01模型,包括数学、编程和科学等领域。

2025-03-06 14:00:00 780

Hadoop2.2.0+Hbase0.98.4+sqoop-1.4.4+hive-0.98.1安装手册(All)_ZCX

叶梓老师整理的Hadoop2.2.0+Hbase0.98.4+sqoop-1.4.4+hive-0.98.1安装手册,非常实用

2018-12-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除