Coarse-to-fine Airway Segmentation Using Multi information Fusion Network and CNN-based Region Growi

该研究提出了一种结合多信息融合卷积神经网络(Mif-CNN)和基于CNN的区域生长方法,用于CT扫描中的气道分割。Mif-CNN利用ASPP和附加边界、位置信息来增强分割性能,而区域生长法则专注于小分支的精确捕捉。实验结果显示,该方法在气道分割任务中表现出高精度,适用于肺部疾病的计算机辅助诊断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Coarse-to-fine Airway Segmentation Using Multi information Fusion Network and CNN-based Region Growing

Jinquan Guo

Computer Methods and Programs in Biomedicine

Abstract

**背景和目的:**胸腔计算机断层扫描的自动气道分割在肺部疾病诊断和计算机辅助治疗中发挥着重要作用。然而,外周分支和复杂树状结构的低对比度仍然是气道分割的两个主要挑战。最近的研究表明,深度学习方法在分割任务中表现良好。受这些工作的启发,我们提出了一个从粗到细的分割框架来获得一个完成的气道树。

**方法:**我们的框架通过多信息融合卷积神经网络(Mif-CNN)和基于CNN的区域分别分割整体和小分支。在Mif-CNN中,将ASPP集成到U形网络中,可以扩大感受野并捕获多尺度信息。同时,边界和位置信息被合并到语义信息中。这些信息被融合以帮助Mif-CNN利用额外的上下文知识和有用的特征。为了提高分割结果的性能,基于CNN的区域生长法旨在专注于获取小分支。这可以完全捕获每个体素周围丰富信息的体素分类网络(VCN)用于将体素分类为气道和非气道。此外,形状重建方法用于细化气道树。

**结果:**我们在私有数据集和EXACT'09的公共数据集上评估我们的方法。与其他方法相比的分割结果相比,我们的方法在完整的气道树分割中显示出有希望的准确性。在私有数据集中,Dice 相似度系数 (DSC)、假阳性率 (FPR) 和灵敏度分别为 92.8%、0.015% 和 88.6%。在 EXACT'09 中,DSC、FPR 和敏感性分别为 95.8%、0.053% 和 96.6%。

**结论:**所提出的 Mif-CNN 和基于 CNN 的区域生长方法在 CT 扫描中准确有效地分割气道树。实验结果表明,该框架可用于肺部疾病和其他相关工作的计算机辅助诊断系统。

Method

image-20230606101532623

划分气道分支

  1. 利用一种迭代回溯算法(Automated 3-D Neuron Tracing With Precise Branch Erasing and Confidence Controlled Back Tracking)来获取一个包含n个分支的气道骨架树

  2. 对于每一条分支,通过计算其平均中心线直径作为其分支直径

    image-20230605094630013
  3. 每个分支还可以通过一种bronchus classification algorithm(BronchusNet: Region and Structure Prior Embedded Representation Learning for Bronchus Segmentation and Classification)分为四类分支:气管和主支气管、叶支气管、节段支气管和亚节段支气管。

  4. 论文选择将气道树分为两类:一个子集$ S_{1} 包含整个气道树,一个子集包含整个气道树,一个子集包含整个气道树,一个子集 S_{2} $包含直径小于2mm的分段支气管和亚分段支气管。

计算机GPU限制:在训练和测试中应用VOI为64x64x64的重叠滑动窗口,步长为32

训练策略

  1. Mif-CNN的输入:从子集$ S_{1} $区域进行64x64x64的重叠滑动窗口取样
  2. VCN的输入:
    1. 先从子集$ S_{2} $中随机选取3000个点作为正样本
    2. 再从选定的气道体素周围选择非气道体素,按欧几里得距离将非气道体素分为1体素、2-4体素、5-7体素、8-10体素和11-30体素,再从这些子集中随机选择3000个非气道体素点作为负样本。
    3. 对于每一个采样点,都提取一个32x32x32的VOI作为输入

Mif-CNN

image-20230605110216687

  1. 为了保持小支气管不消失,减少池化次数
  2. 使用ASPP提高多尺度特征的提取
  3. 补充边界信息和坐标信息
    1. 边缘引导模块(一种深监督)
      1. 利用Label提取轮廓标签,膨胀腐蚀可能可以直接实现
      2. 从浅层特征检测局部边界信息,利用Label的轮廓标签进行监督
    2. 坐标信息
      1. 直接添加坐标信息(-1到1)到解码器的最后一层用作预测
  4. 损失函数
    1. 边缘二元交叉熵损失监督
    2. 分割用Dice监督

基于CNN的区域生长法

  1. 传统的区域增长法是根据密度(HU强度值)来分割气管,但气管的强度值与周围组织的强度值比较接近,因此表现较差
  2. 将从Mif-CNN中获得的气道树末端的体素作为初始种子点,使用3D CNN(VCN)将种子点26个邻居的未处理体素分类为气道和非气道
  3. 生成过程中,如果有新的气道体素就推送到堆栈上,当堆栈不为空时,允许气道树继续增长。

形状重建

参考了Deep Distance Transform for Tubular Structure Segmentation in CT Scans

基于中心线跟踪算法

  1. 骨架检测:利用迭代回溯算法(Automated 3-D Neuron Tracing With Precise Branch Erasing and Confidence Controlled Back Tracking)来计算得到气道骨架

  2. 气道重建:利用一种管状结构距离变换的方法,将每个气道体素点都转化为到管状结构表面最近的距离,欧几里得距离,利用从距离图重建的形状先验来细化分割掩码。简而言之,就是将管道视为一个个球体组成的串,会存在重叠,但可以根据球体的直径确定某个体素点是不是气道点

    image-20230606094241520

Experiemnt

评价指标:DSC、FPR、Sen、Pre

  1. the whole airway
image-20230606100200562
  1. Airway without trachea and main bronchus,即只有小分支
image-20230606100316147

总结

  1. 这篇论文的工作比较丰富充实,但借鉴了Deep Distance Transform for Tubular Structure Segmentation in CT Scans这篇论文却没有给出引用,借鉴的程度是比较大的,模型主图几乎一样,2.4节就是这篇论文的内容,但没有给出引用,还写明是自己提出的。
  2. 论文将分割气道分为两部分,分割+细化,在主分割上,运用了VOI区域提取、ASPP、补充边界信息和坐标信息的方法来尽可能地提高一阶段的分割效果
  3. 第二阶段,采用Deep Distance Transform for Tubular Structure Segmentation in CT Scans提出的方法来细化分割,将管道视为一个个球体组成的串,会存在重叠,但可以根据球体的直径确定某个体素点是不是气道点
  4. 论文的实验部分,对比方法偏少,也缺少Branch、Length等指标的评价,可能是对这个领域的研究不够深入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值