文章目录
精读论文
前言
从这篇开始,我们将进入YOLO的学习。YOLO是目前比较流行的目标检测算法,速度快且结构简单,其他的目标检测算法如RCNN系列,以后有时间的话再介绍。
本文主要介绍的是YOLOV1,这是由以Joseph Redmon为首的大佬们于2015年提出的一种新的目标检测算法。它与之前的目标检测算法如R-CNN等不同之处在于,R-CNN等目标检测算法是两阶段算法, 步骤为先在图片上生成候选框,然后利用分类器对这些候选框进行逐一的判断;而YOLOv1是一阶段算法,是端到端的算法,它把目标检测问题看作回归问题,将图片输入单一的神经网络,然后就输出得到了图片的物体边界框,即boundingbox以及分类概率等信息。下面我们就开始学习吧。
下面是一些学习资料:
论文链接:[1506.02640] You Only Look Once: Unified, Real-Time Object Detection (arxiv.org)
项目地址 :YOLO: Real-Time Object Detection (pjreddie.com)
Github源码地址: