专栏会持续更新,预计100+篇文章
专栏介绍:
本专栏 集成| 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 |,力争详尽系统的阐述知识点。
1.专栏详情介绍:
全流程的专栏内容带你一起走进人工智能,本专栏只讲会用到的知识点与工具,实用性会贯穿整个专栏。本专栏以YOLOv5及其改进为主线,我们会详细的介绍以下内容:
前期所要具备的基础知识与工具使用,如下:
- 具体包括 环境搭建(包括GPU) | 代码调试技巧 | 连接使用服务器 | Python与Pytorch有关 | 机器学习(线性回归 | 决策树 | 逻辑回归 | 梯度下降 | 支持向量机 | 集成学习 | 朴素贝叶斯等) | PyCharm-VSCode-Anaconda-AutoDL与恒源云云服务器-Roboflow-labelimg等 | 走进神经网络 | 深度神经网络DNN | 卷积神经网络CNN | 区域卷积神经网络RNN | 目标检测 | 经典网络模型二十余种(LeNet-5 | AlexNet | ZFNet | VGGNet | GoogLeNet | ResNet | DenseNet | SeNet | MobileNet | ShuffleNet | RepVGG | MobileOne | FasterNet | R-CNN | SPPNet | Fast RNN | Faster RNN | R-FCN | SSD ) |
YOLOv5及其改进学习详细规划,我们分为五个阶段,如下:
- 第一个阶段:模型的原理与网络结构的详细解读,包括每个文件夹及其所包含的文件(初步了解),以及每个函数的具体注释(初步了解)。
- 第二阶段:局部解析,我们会逐步剖析每个文件,并逐行注释解读。详解网络结构的构建过程。
- 第三阶段:代码的整体理解(结合上述的函数调用图),整体调试与验证模型。
- 第四阶段:对评估指标与保存结果进行详细的解读。
- 第五阶段:对模型进行改进,包括添加或修改模块的详细解读以及具体实施步骤。具体包括 :
添加注意力机制SE CBAM ECA CA SimAM S2-MLPv2 NAMAttention Criss-CrossAttention等| 更换激活函数SiLU,ReLU,ELU,Hardswish,Mish,Softplus,AconC等 | 更换backbone主干MobileNetV3,ShuffleNetV2,EfficientNetv2,GhostNet,SwinTransformer | 更换Neck之BiFPN,AFPN,BiFusion | 更换空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC | 更换损失函数GIoU,DIoU,CIoU,EIoU,AlphaIoU,SIoU,WIoU | 更换NMS非极大抑制DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS 、SIoU-NMS、Soft-NMS | 更换Yolov8 C2f模块 | 引入RepVGG重参数化模块 | 增加小目标检测层 | 密集连接卷积网络DenseNet思想 | 更换减轻模型的复杂度同时提升精度GSConv+Slim-neck | 更换YOLOX解耦头 | 引入反向残差注意力模块iRMB | 在 C3 模块中添加 12 种注意力机制C3_SimAM, C3_CoT, C3_Double, C3_SK, C3_EffSE, C3_GatherE等 | 8种热力图可视化方式GradCAM XGradCAM ScoreCAM LayerCAM HiResCAM EigenCAM… | 更换Google的优化器Lion | 更换动态卷积之CondConv | 更换全维动态卷积OMNI |
2.各部分详情:
1. 机器学习
- 机器学习(一) 本文(3万字) | 机器学习概述 |-CSDN博客
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |_knn经典论文 复现-CSDN博客
- 机器学习(三) 本文(3万字) | 线性回归LR原理 | Python复现 |-CSDN博客
- 机器学习(四) 本文(2万字) | 梯度下降GD原理 | Python复现 |_机器学习gd方法-CSDN博客
- 机器学习(五) 本文(4万字) | 逻辑回归 (Logistic Regression,LR) | Python复现 |-CSDN博客
- 机器学习(六) 本文(3.5万字) | 特征工程(Feature Engineering) | Python复现 |-CSDN博客
- 机器学习(七) 本文(4万字) | 决策树(Decision Tree) | Python复现 |-CSDN博客
- 机器学习(八) 本文(3万字) | 集成学习(ensemble learning) |_esemble learning yolov5-CSDN博客
- 机器学习(九) 本文(4万字) | 支持向量机 | 第一篇 |(Support Vector Machine,SVM) | Python复现 |-CSDN博客
- 机器学习(九) 本文(4万字) | 支持向量机 | 第二篇 |(Support Vector Machine,SVM) | Python复现 |_-CSDN博客
- 机器学习(九) 本文(4万字) | 支持向量机 | 第三篇 |(Support Vector Machine,SVM) | Python复现 |-CSDN博客机器学习(十) 本文(2万字) | 朴素贝叶斯(Naive Bayes) | Python复现 |-CSDN博客
2. 深度学习与目标检测
- 深度学习与目标检测系列(一) 本文约(17万字) | 覆盖 | 走进神经网络 | 深度神经网络DNN | 卷积神经网络CNN | 区域卷积神经网络R-CNN | 目标检测 | 经典网络模型二十余种-CSDN博客
- 深度学习与目标检测系列(二) 本文约(7万字) | 全面解读复现YOLOv1 | PyTorch |-CSDN博客
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |-CSDN博客
- 深度学习与目标检测系列(四) 本文约(4.5万字) | 全面解读复现VGGNet | Pytorch |-CSDN博客
- 深度学习与目标检测系列(五) 本文约(9万字) | 全面解读复现GoogleNet_InceptionV1-V4 | Pytorch |-CSDN博客
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |-CSDN博客
- 深度学习与目标检测系列(七) 本文约(8万字) | 全面解读复现MobileNetV1-V3 | Pytorch |-CSDN博客
- 深度学习与目标检测系列(八) 本文约(6万字) | 全面解读复现ShuffleNetV1-V2 | Pytorch |-CSDN博客
3. YOLOv5
已全部更新
4. YOLOv5改进
已全部更新