DeepSeek-llm-7B-Chat微调教程(使用SwanLab可视化工具)

知乎地址:也是我写的,懒得换图了,直接用了。

前言

DeepSeek系列大模型由杭州深度求索人工智能基础技术研究有限公司提供,该系列大模型有以下这些优势:

  1. 高性价比:DeepSeek-V2模型以其史无前例的性价比著称,推理成本被降到每百万token仅1块钱,约等于Llama3 70B的七分之一,GPT-4 Turbo的七十分之一。
  2. 架构创新:DeepSeek对模型架构进行了全方位创新,提出崭新的MLA(一种新的多头潜在注意力机制)架构,把显存占用降到了过去最常用的MHA架构的5%-13%,同时,独创的DeepSeekMoESparse结构,也把计算量降到极致。
  3. 开源模型:DeepSeek的模型全部开源,包括通用大模型DeepSeek LLM、MoE模型DeepSeek MoE、DeepSeek V2等,方便用户进行二次开发和优化。
  4. 性能强劲:DeepSeek-V2包含236B总参数,其中每个token激活21B,支持128K tokens的上下文长度,在性能上比肩GPT-4 Turbo。

本文针对其llm-7B-Chat模型进行微调,希望其回复内容可以更加人性化。

DeepSeek-LLM系列有多个大模型,这里希望通过教程让大家能完成完整的微调流程,碍于设备以及各类资源限制,这里使用7B大小的模型来完成本文的实验,还有67B的模型,如果有兴趣的小伙伴可以尝试,不过模型比较大,对显存的要求较高,可以根据自身条件选择。

关于数据集的选择方面,本次教程我想让大模型回复的更亲切点,在最开始推理的时候,发现虽然chat模型回答的非常不错,但是有点套路的感觉,

于是去网上寻找数据集,然后从EmoLLM这个项目里发现了很多现成的数据集,他们的数据集由智谱清言、文心一言、通义千问、讯飞星火等大模型生成,如果有其他需要可以参考EmoLLM数据生成方式来构建自己的数据集,这里我使用了其中单轮对话数据集来进行微调。

链接资料

可视化工具介绍

SwanLab是一款完全开源免费的机器学习日志跟踪与实验管理工具,为人工智能研究者打造。有以下特点:

1、基于一个名为swanlab的python库

2、可以帮助您在机器学习实验中记录超参数、训练日志和可视化结果

3、能够自动记录logging、系统硬件、环境配置(如用了什么型号的显卡、Python版本是多少等等)

4、同时可以完全离线运行,在完全内网环境下也可使用

如果想要快速入门,请参考以下文档链接:

Lora简单介绍

LoRA(Low-Rank Adaptation)是一种针对大型语言模型的微调技术,旨在降低微调过程中的计算和内存需求。其核心思想是通过引入低秩矩阵来近似原始模型的全秩矩阵,从而减少参数数量和计算复杂度。

在LoRA中,原始模型的全秩矩阵被分解为低秩矩阵的乘积。具体来说,对于一个全秩矩阵W,LoRA将其分解为两个低秩矩阵A和B的乘积,即W ≈ A * B。其中,A和B的秩远小于W的秩,从而显著减少了参数数量。

在微调过程中,LoRA只对低秩矩阵A和B进行更新,而保持原始模型的全秩矩阵W不变。比如在本文微调代码里我们可以直接计算训练参数占比,代码如下:

model.print_trainable_parameters()

然后当设置lora_rank=16,lora_alpha=32时,训练参数占比如下:

trainable params: 37,478,400 || all params: 6,947,844,096 || trainable%: 0.5394

可以看到总参数量是7B,但是训练的时候只有不到一半的参数参与微调,这样,微调过程只需要优化较少的参数,从而降低了计算和内存需求。同时,由于低秩矩阵的结构特点,LoRA能够保持原始模型的性能,避免过拟合现象。

LoRA的另一个优点是易于实现和部署。由于LoRA只对低秩矩阵进行更新,因此可以很容易地集成到现有的训练框架中。此外,LoRA还可以与其他微调技术相结合,进一步提高微调效果。

总之,LoRA是一种有效的微调技术,通过引入低秩矩阵来降低微调过程中的计算和内存需求,同时保持原始模型的性能。这使得LoRA成为一种适用于大型语言模型的微调方法,具有广泛的应用前景。

显存要求

max_seq_len=2048时训练与推理所需要的显存只有15GB左右,一块3090就可以跑

具体的显卡数据可以参考我另外一篇文章,统计了大家熟悉的显卡的数据。

参考资料:最全深度学习算法显卡参数统计

推理时需要的显存数据:

微调代码

1、环境设置

本文代码python=3.10,请设置环境python>=3.9即可。

由于本次使用的模型较大,请确保此次微调显存至少有15GB.

我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装了pytorch以及CUDA

torch
transformers
accelerate
peft
bitsandbytes
swanlab

2、准备模型和数据集

DeepSeek模型是一系列基于Transformer架构的深度神经网络模型,它们在不同的时间点针对不同的应用场景被开发和优化。以下是DeepSeek模型的时间顺序介绍,包括它们针对的场景、用途和优势:

1、DeepSeek-V2(非常大,没有一定资源不建议微调):

DeepSeek-V2是一个千亿级模型,参数量达到236B,其中激活参数为21B。它在中文综合能力、英文综合能力、知识、数学、推理、编程等榜单中均表现出色。可以应用于智能对话、文本生成、语义理解、计算推理等场景。

2、DeepSeek-Prover:

这是一个70亿参数的开源模型,通过结合强化学习和蒙特卡洛树搜索,显著提升了证明生成的效率和准确性。主要用于形式定理证明。

3、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值