使用openMind完成一个简单的微调任务(使用swanlab可视化工具)

简介

openMind是一个综合性的人工智能平台,它提供了应用使能开发套件,支持各大模型社区,具备海量模型/数据托管能力,并提供在线推理体验服务。该平台还支持接入内容审核、病毒扫描等服务,助力平台伙伴快速构建社区,并对外提供模型/数据集托管和在线推理体验服务。openMind开发套件提供模型训练、微调、评估、推理等全流程开发能力,开发者可以通过简单的API接口实现微调、推理等任务,显著缩短开发周期。

1、基本概念

其实最开始接触openmind的时候并不清楚究竟是什么,感觉有点乱,所以下面做一个简单的类比,大家看了可能就懂了怎么去使用它。

1、openmind--->transformers/mindformers

openmind其实就是类似于transformers的大模型封装工具,其中就有AutoModelForSequenceClassification、AutoModelForCausalLM等等模型加载工具以及像TrainingArguments参数配置工具等等,其实原理基本一样,只是可能没有transformers那么完备。

2、魔乐社区--->魔搭社区/huggingface

魔乐社区其实就是类似于huggingface这种模型托管社区,transformers可以直接从huggingface获取模型或者数据集,openmind也是一样的,可以从魔乐社区获取模型和数据集。

2、微调代码

如果了解了上述的对应机制,那么就可以跑一个简单的微调代码了,该代码参考了魔乐社区的教程文档,稍作调整,可以对比NVIDIA显卡的结果。

概述

openMind Library是一个深度学习开发套件,通过简单易用的API支持模型预训练、微调、推理等流程。openMind Library通过一套接口兼容PyTorch和MindSpore等主流框架,同时原生支持昇腾NPU处理器,同时openMind Library可以和PEFTDeepSpeed等三方库配合使用,来加速模型微调效率。

环境配置

如果是昇腾AI卡系列的话,配置环境前需要先安装驱动等设备,具体可以参考软件安装-CANN商用版8.0.RC3开发文档-昇腾社区

然后安装好驱动了之后就可以配置环境了,本次微调代码使用pytorch框架,openmind中自带了基于pytorch框架的各类函数,因此正常安装openmind就行。

注意以下几点:

1、可以使用镜像源来安装环境,不然会很浪费时间,可以使用清华源:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple name

2、魔乐社区中有两个框架的分类,如果是pytorch就只能选择pytorch框架,同理如果是mindspore就只能选择mindspore框架

3、配置环境的时候,按照openmind官方文档说可以同时存在两个框架,使用的时候分别设置就行,但是实际使用的时候只能存在一个框架,一旦设置了两个框架,使用的时候无论如何设置都会报错说openmind不知道使用哪个框架,所以最好在环境里只安装一个

>>> import openmind
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/miniconda3/envs/openmind-pt-cp3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值