论文 | 算法 | 贝叶斯(Bayesian)鲁棒图对比学习

该博客介绍了贝叶斯鲁棒图对比学习(BRGCL)方法,旨在解决图神经网络(GNN)在处理含有噪声的图数据时性能下降的问题。BRGCL通过一个完全无监督的编码器学习鲁棒的节点表示,使用贝叶斯非参数置信度估计(BEC)算法识别并利用自信节点。实验结果显示,BRGCL在节点分类和聚类任务上优于其他GNN方法,并且其学习的节点表示能有效抵抗噪声干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创 Yancheng Wang 图科学实验室Graph Science Lab 2022-05-31 00:00 发表于台湾

在这里插入图片描述

图神经网络 (GNN) 已被广泛用于学习节点表示,并且在节点分类等各种任务中表现出色。然而,噪声不可避免地存在于现实世界的图数据中,会大大降低 GNN 的性能,因为噪声很容易通过图结构传播。在这项工作中,我们提出了一种新颖且鲁棒的方法,贝叶斯鲁棒图对比学习 (BRGCL),它训练 GNN 编码器来学习鲁棒的节点表示。BRGCL 编码器是一个完全无监督的编码器。在训练 BRGCL 编码器的每个时期迭代执行两个步骤:(1)估计置信节点并通过新颖的贝叶斯非参数方法计算节点表示的鲁棒集群原型;(2) 节点表示和鲁棒集群原型之间的原型对比学习。在公共和大规模基准上的实验证明了 BRGCL 的卓越性能和学习节点表示的鲁棒性。

在这里插入图片描述

论文:

https://arxiv.org/abs/2205.14109

代码:

https://github.com/BRGCL-code/BRGCL-code

亮点:

  • 贝叶斯鲁棒图对比学习(BRGCL)中一个完全无监督的编码器在噪声图数据上进行训练。
  • 完全无监督的 BRGCL 编码器只在输入节点属性上进行训练,没有真实标签,甚至训练数据中的真实类别编号。
  • BRGCL 利用一种称为贝叶斯非参数置信度估计 (BEC) 的新算法估计的置信节点。
  • 揭示了自信节点在带噪声图数据训练GNN编码器中的重要性。
  • 可视化结果表明,BEC估计的自信节点通常远离类/簇边界,鲁棒原型表示也远离类/簇边界。
  • 在流行和大规模图形数据集上的实验结果证明了 BRGCL 在噪声图形数据上的节点分类和节点聚类方面优于竞争性 GNN 方法。

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值