论文 | 机器人 | 部分可观测下机器人规划场景图推理

研究提出了一种名为SARP的算法,它利用视觉上下文信息构建场景图,帮助机器人在部分可观察环境中进行长期目标规划。通过全局场景图推理,机器人能更好地估计世界状态并降低行动成本。在模拟和真实数据集上的实验表明,SARP在目标搜索任务中表现出色,尤其在对象数量增加时仍能维持策略质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创 Saeid Amiri 图科学实验室Graph Science Lab 2022-06-20 18:43 发表于台湾

部分可观察域中的机器人规划很困难,因为机器人需要同时估计当前状态和规划动作。当域包含许多对象时,对对象及其关系进行推理会使机器人规划更加困难。在这篇论文中,我们开发了一种称为机器人规划场景分析 (SARP) 的算法,该算法使机器人能够利用视觉上下文信息进行推理,以在不确定的情况下实现长期目标。SARP 使用从不同位置捕获的图像构建场景图,即对象及其关系的因子表示,并使用它们进行推理,以在部分可观察性下启用上下文感知机器人规划。已经在模拟中使用多个 3D 环境以及由真实机器人收集的数据集进行了实验。

在这里插入图片描述

论文:

Reasoning with Scene Graphs for Robot Planning under Partial Observability

下载:

https://ieeexplore.ieee.org/abstract/document/9730031

补充材料:https://sites.google.com/view/sarp-icra-22/home

亮点:

开发了一种名为场景分析机器人规划(SARP)的算法,用于上下文感知、以对象为中心的场景分析中规划机器人的行动。SARP利用单个图像的局部场景图来构建和扩充全局场景图,以实现部分可观测条件下的基于上下文感知的机器人规划。

全局场景图是在感知到新物体时,利用在不同位置生成的局部场景图动态构建的。通过这个全局场景图进行推理,可以产生有用的信息,帮助机器人估计当前的世界状态。这种增强的状态估计可以提高机器人在实现目标方面的性能。

利用目标搜索任务对SARP进行了评估,其中机器人需要在室内环境中定位一个物体。使用POMDP对机器人的感知和驱动技能进行建模,使用Neural Motifs计算局部场景图,并使用近似推理方法建立从大数据集计算的马尔可夫网络。通过与模拟中的竞争基线进行比较,对SARP进行了广泛的评估。

与预先定义的行动策略相比,SARP降低了16%的总体行动成本。此外,SARP帮助机器人在对象数量增加的情况下保持其策略质量,并使机器人专注于与当前任务最相关的区域。

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值