Normalizing Flows (NF) - 流模型 - 研究方向

本文介绍了正则化流(Normalizing Flows, NFs)的研究重点,包括归纳性偏差、微分同胚的形式以及损失函数。讨论了基准度量在建模中的作用,微分同胚的架构选择,以及非欧几里得空间和离散分布的泛化问题。此外,还提出了在训练NFs时的开放性问题和可能的研究方向。" 121693284,1196778,Python 3.8 使用aiohttp SSL连接错误解决方案,"['Python', 'SSL', '网络编程', 'aiohttp']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Normalizing Flows: An Introduction and Review of Current Methods (2020 TPAMI)

Open problems and possible research directions

NFs研究方向

Inductive biases (归纳性偏置)
role of the base measure (基准测量的作用)
Form of diffeomorphisms (微分同胚的形式)

loss function

Generalisation to non-Euclidean spaces(非欧几里得空间的泛化)

flows on manifolds

discrete distributions (离散分布)

去量化dequantization,(即在离散数据中加入噪声,使其成为连续数据)

1. Inductive biases (归纳性偏差)

1.1 role of the base measure &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值