
论文解析
急流勇进
越努力,越幸运。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[检测]Focal Loss论文解析
转载了两篇文章。文章1:链接 论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 优化版的MXNet实现:https://github.com/miraclewkf/FocalLoss-MXNetRBG和Kaiming大神的新作。 我们知道object detecti...转载 2019-01-23 19:09:09 · 884 阅读 · 0 评论 -
SqueezeNet网络讲解
原文地址:https://zhuanlan.zhihu.com/p/31558773引言SqueezeNet是Han等提出的一种轻量且高效的CNN模型,它参数比AlexNet少50x,但模型性能(accuracy)与AlexNet接近。在可接受的性能下,小模型相比大模型,具有很多优势:(1)更高效的分布式训练,小模型参数小,网络通信量减少;(2)便于模型更新,模型小,客户端程序容易更新;...转载 2019-03-27 18:33:43 · 7409 阅读 · 0 评论 -
[CVPR2019]:专门为卷积神经网络设计的训练方法:RePr
文章来源:https://zhuanlan.zhihu.com/p/58095683CVPR2019年的一篇文章RePr: Improved Training of Convolutional Filters这篇文章初看abstract和introduction,差点以为是model pruning,看到后面发现是针对卷积神经网络的训练方法,而且这个方法比较简单,但文章通过大量的分析...转载 2019-03-26 17:07:24 · 456 阅读 · 0 评论 -
[CVPR2019]:最新高效卷积方式HetConv
原文链接:https://zhuanlan.zhihu.com/p/59075508最近放出来了一篇CVPR2019论文,文章提出了一种新的高效卷积方式:HetConv,在CIFAR10、ImageNet等数据集超过了标准卷积以及DW+PW的高效卷积组合形式,取得了更高的分类性能。论文链接:https://arxiv.org/abs/1903.04120【Motivation】目前提高CNN性能...转载 2019-03-26 17:03:32 · 2681 阅读 · 0 评论 -
人脸关键点检测综述
本文转自:https://zhuanlan.zhihu.com/p/42968117人脸关键点人脸关键点检测是人脸识别和分析领域中的关键一步,它是诸如自动人脸识别、表情分析、三维人脸重建及三维动画等其它人脸相关问题的前提和突破口。近些年来,深度学习方法由于其自动学习及持续学习能力,已被成功应用到了图像识别与分析、语音识别和自然语言处理等很多领域,且在这些方面都带来了很显著的改善。因此,本文针对深...转载 2019-03-11 21:41:41 · 2301 阅读 · 0 评论 -
Extensive Facial Landmark Localization with Coarse to fine Convolutional Network Cascade 论文解析
基于改进Coarse-to-fine CNN网络的人脸特征点定位原文地址:http://blog.csdn.net/hjimce/article/details/50099115作者:hjimce一、相关理论 本篇博文主要讲解2013年face++的大牛们提出粗到精人脸特征点定位算法paper:《Extensive Facial...转载 2019-03-11 16:43:34 · 1279 阅读 · 0 评论 -
Deep Convolutional Network Cascade for Facial Point Detection阅读笔记
原文链接: https://blog.csdn.net/u010359545/article/details/49613801 CVPR2013摘要本文提出了一种通过3级卷积神经网络估计脸部关键点的新方法。在每一级,网络的输出都是鲁棒且准确的。卷积网络的深度结构能在初始阶段中,从全部的脸部区域中提取出高级的特征,这些有利于关键点的...转载 2019-03-11 15:13:05 · 361 阅读 · 0 评论 -
损失函数改进方法总览
原文链接: https://blog.csdn.net/u014380165/article/details/76946358 这篇博客主要列个引导表,简单介绍在深度学习算法中损失函数可以改进的方向,并给出详细介绍的博客链接,会不断补充。1、Large Marge Softmax Loss ICML2016提出的Large Marge Softmax Loss(L-softma...转载 2019-03-11 10:53:33 · 1442 阅读 · 0 评论 -
[Attention]SE-Net论文讲解
转自两篇解析,第一篇作者本人的解析,第二篇某位博主的解析文章1: 链接 编者按:Momenta Paper Reading致力于打造一个自动驾驶学术前沿知识的分享沟通平台,深入浅出让你轻松读懂AI。本次我们分享的主题是ImageNet冠军模型SENet。论文链接:[1709.01507] Squeeze-and-Excitation Network...转载 2019-01-23 15:45:33 · 12657 阅读 · 1 评论 -
[轻量网络]ShuffleNet论文解读
转自两篇文章当作笔记文章1:链接 论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 论文链接:https://arxiv.org/abs/1707.01083算法详解: ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移...转载 2019-01-24 19:11:47 · 756 阅读 · 0 评论 -
[Mobile-Net_v2] Mobile-Net_v2论文解析
转自三篇文章做笔记文章1:https://zhuanlan.zhihu.com/p/33075914几天前,著名的小网 MobileNet 迎来了它的升级版:MobileNet V2。之前用过 MobileNet V1 的准确率不错,更重要的是速度很快,在 Jetson TX2 上都能达到 38 FPS 的帧率,因此对于 V2 的潜在提升更是十分期待。V2 主要引入了两个改动:Linear B...转载 2019-01-24 16:23:45 · 916 阅读 · 0 评论 -
[Mobile-Net] MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications(论文解析)
之前看了mobile-net论文,现在有些遗忘,转自大牛论文解析博客。文章地址:链接 本篇博文来介绍一个深度学习模型加速的算法:MobileNets,可以在基本不影响准确率的前提下大大减少计算时间和参数数量。论文:MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications ...转载 2019-01-24 16:16:18 · 269 阅读 · 0 评论 -
[分割]Learning a Discriminative Feature Network for Semantic Segmentation(DFN)
本文转自3篇文章当作自己的笔记。文章1:链接 Learning a Discriminative Feature Network for Semantic SegmentationLearning a Discriminative Feature Network for Semantic Segmentation收录:CVPR2018(IEEE Conference on C...转载 2019-01-23 20:28:10 · 747 阅读 · 0 评论 -
Bag of Tricks for Image Classification with Convolutional Neural Networks 论文讲解
文章目录1. baseline1.1 baseline template1.2 Training preprocessing pipelines1.3 Test preprocessing pipelines2. Efficient Training2.1 Large batch training2.1.1 Linear scaling learning rate2.1.2 Learning ra...原创 2019-03-28 20:40:17 · 1459 阅读 · 0 评论