
更多的学习
文章平均质量分 94
反绎学习、多标签学习、多视角学习等
因吉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文阅读 (87):Accelerated Proximal Gradient Methods for Nonconvex Programming
图像及信号处理过程中的非凸和非光滑问题备受关注,其中加速近端梯度 (Accelerated proximal gradient, APG) 是处理该问题的优秀方法。然而在非凸规划中,其是否能够收敛到一个临界点不得而知。本文通过引入一个满足充分下降属性的监视器,将APG扩展到通用的非凸和非平滑问题,并提出monotone APG和nonmonotone APG。其中,nonmonotone APG不要求目标函数单调约简,每次迭代需要的计算量更少。原创 2023-03-28 09:51:24 · 1201 阅读 · 0 评论 -
论文阅读 (58):Research and Implementation of Global Path Planning for Unmanned Surface Vehicle Based...
无人水面艇 (Unmanned surface vehicle, USV) 是一种新型的智能水面艇,其关键技术是全局路径规划。为解决无人艇全局路径规划问题,提出一种改进的基于电子海图的航行成本优化A*∗算法。S-57电子海图实现八叉树网格环境模型的建立,提出一种基于航行安全权重、引航数量和路径曲线平滑的改进A*∗算法,保证航路安全,减少规划 时间,并提高路径的平滑度。仿真结果表明,环境模型构建方法和改进的A*∗算法可以生成安全合理的全局路径。.........原创 2022-06-22 09:41:03 · 1049 阅读 · 0 评论 -
论文阅读 (57):2-hydr_Ensemble: Lysine 2-Hydroxyisobutyrylation Identification with Ensemble Method (任务)
赖氨酸2-羟基异丁酰化是蛋白质组学研究中检测到的一种新型翻译后修饰类型。这种修饰研究可能有助于多种疾病的研究和药物开发。在这项工作中,提出了一种新的2-hydr_Ensemble残基识别算法,该残基具有蛋白质水平的序列信息。该方法与典型的分类模型进行比较。结果显示HeLa 细胞、立球菌、水稻种子,以及酿酒酵母的 AUC 值分别达到0.9197、0.8192、0.9307,以及0.8897。进一步使用双轮廓贝叶斯的统计特征,从几个特征向量中找出潜在的信息。...原创 2022-06-20 14:49:10 · 264 阅读 · 0 评论 -
论文阅读 (56):Mutli-features Predction of Protein Translational Modification Sites (任务)
翻译后修饰 (Post translational modification, PTM) 在生物加工中起着重要作用。潜在的翻译后修饰由中心位点和相邻的氨基酸残基组成,它们是基本的蛋白质序列残基,有助于发挥它们的生物学功能,且有助于理解作为蛋白质设计和药物设计基础的分子机制。现有的修饰位点预测算法往往存在稳定性和准确性较低等不足。本文结合了蛋白质的物理、化学、统计和生物学特性,提出了一种新的框架来预测蛋白质的翻译后修饰位点。调用多层神经网络和支持向量机来预测具有所选特征的潜在修饰位点,这些特征包括氨基酸...原创 2022-06-17 11:03:40 · 501 阅读 · 0 评论 -
论文阅读 (55):Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal Constraints
虑在时间约束和任务完成不确定性下将任务动态分配给多个代理的问题。任务目标是最小化操作结束时不成功任务的数量。提出了一种多机器人分配算法,该算法将不确定性和多智能体协调下的顺序决策中的计算难题解耦,并通过层次方式解决。下层使用带有树搜索的动态规划计算单个代理的策略,上层解决单个计划中的冲突以获得有效的多代理分配。所提出的随机基于冲突的分配 (Stochastic conflict-based allocation, SCoBA) 将在合理假设下完成且期望最优。在实践中,SCoBA的高效计算可以满足在线交错规划原创 2022-06-15 10:51:36 · 694 阅读 · 0 评论 -
论文阅读 (51):Integration of a Holonic Organizational Control Architecture and Multiobjective...
基于自主协作全局 概念,提出了一种全局指挥与控制 (C2) 的组织控制架构,以将C2组织建模为全局多级分散决策网络的集成。OCA包含两个层级:1)操作级别控制;2)战术级别控制。为了在动态环境中实时完成任务,不同控制级别的决策者 (DM) 需要进行广泛的任务协调,并随时根据需要进行任务调整。在OCA的基础上,提出了一种完整的多目标进化算法。该算法可以生成灵活的分布式调度,以解决任务环境中的意外变化,例如设备故障、突发事件,以及DM失效等。方法的优势在于在保持组织稳定性的同时,降低了适应成本。......原创 2022-05-24 10:01:53 · 312 阅读 · 0 评论 -
论文阅读 (50):A Novel Matrix Game with Payoffs of Maxitive Belief Structure
IJIS2019:最大确信结构收益的矩阵博弈 (A novel matrix game with payoffs of maxitive belief structure);背景:最大确信结构 (maxitive belief structures,MBSs) 以一种特定的结构来表示不精确和不确定 (imprecise and uncertain) 信息,使其能够同时建模概率的非特异性和不精确性 (nonspecificity and imprecise);方法:所提出的模型可原创 2022-05-19 19:39:24 · 378 阅读 · 0 评论 -
论文阅读 (42):A Survey of Multi-View Representation Learning
1 题目:多视角表征学习综述 (A survey of multi-view representation learning);2 背景:近年来,多视角表征学习已成为机器学习和数据挖掘领域的冉冉新星;3 目标:介绍两种类型的多视角表征学习:a)多视角表征对齐 (multi-view representation alignment);b)多视角表征融合 (multi-view representation fusion);4 要点:a)回顾多视角表征对齐原创 2022-02-20 11:14:40 · 4279 阅读 · 3 评论 -
论文阅读 (25):Multi-Label Learning with Deep Forest (2020MLDF)
对文章Multi-label learning with deep forest (2020MLDF)进行学习,主要内容如下:1)深度森林是一种基于决策树的深度学习框架,其具有一个级联结构,可以向深度神经模型一样学习,并且不依赖于反向传播;2)首次将深度森林用于多标签学习;3)设计了基于深度森林的方法,包含两种机制。原创 2021-05-24 22:05:47 · 677 阅读 · 0 评论 -
论文阅读 (十五):A Review on Multi-Label Learning Algorithms (2013)
引入 论文地址:http://palm.seu.edu.cn/zhangml/files/TKDE’13.pdf 主要内容: 1)多标签定义及评价指标; 2)具体分析八种代表算法; 3)总结部分学习设置。原创 2020-11-02 13:08:28 · 787 阅读 · 7 评论 -
论文阅读 (30):Granular Ball Sampling for Noisy Label Classification or Imbalanced Classification (2021)
本文要点: 1)提出粒球抽样 (granular-ball sampling, GBS):生成数据自适应的超球,超球上的点则是采样点; 2)GBS可用于噪声标签分类领域; 3)GBS可作为不平衡数据的欠采样方法; 4)GBS时间复杂度接近O(N)O(N)O(N)。原创 2021-09-23 09:38:06 · 1347 阅读 · 0 评论 -
论文阅读 (二十):Isolation Kernel and Its Effect on SVM (2018)
引入 本文\color{red}^{[1]} [1] 贡献: 1)提出了一种新的数据相关核,即隔离核 (Isolation kernel)。与已有的数据相关核相比,其无需使用或学习类别信息。 2)对隔离核的划分机制进行评估,即划分机制需要使得大隔离分区 (partition)位于稀疏区域 (region),小隔离分区位于密集区域。该性质要求隔离核:两个点间距离相等的点,在稀疏区域应该更相似,相比于在密集区域。 3)说明了为什么隔离核能够适用于SVM,并提高预测精度。 4)与RBF、L原创 2020-12-25 11:47:01 · 978 阅读 · 0 评论 -
论文阅读 (44): DNCNet:Deep Radar Signal Denoising and Recognition
IEEE TAES2022:深度雷达信号去噪和识别 (DNCNet: Deep radar signal denoising and recognition);背景:深度学习发展迅速,在计算机视觉、认知雷达和信号等应用领域取得了无与伦比的成就。然而,在数据分布不匹配的情况下,大多数深度网络的性能会面临退化,例如训练集和测试集具有不同分布,如训练集是中国雷达信号数据,测试集是美国雷达信号数据。进一步考虑噪声污染,当测试集的信噪比明显低于训练集时,分类器的的准确性可能显著下降。原创 2022-03-11 16:49:24 · 5385 阅读 · 0 评论 -
论文阅读 (43):Optimizing Binary Decision Diagrams with MaxSAT for Classification
AAAI2022:使用MaxSAT优化二元决策图进行分类 (Optimizing binary decision diagrams with MaxSAT for classification);背景:关键决策下的可解释人工智能 (explainable artificial intelligence, XAI) 的发展,促使了可解释机器学习 (machine learning, ML) 模型的探索。事实上,由于它们的内在结构,尤其是小尺寸,使得这些模型在本质上可被人类理解。近年来,一些计算此类模型的原创 2022-03-08 18:51:45 · 981 阅读 · 0 评论 -
论文阅读 (二十一):Exploratory Machine Learning with Unknown Unknowns (2021AAAI EXML)
传统机器学习就不逼逼了。想象这样一个问题,咋花了老半天训练了一个模型,结果效果西撇,啥子原因来?啊~可能算法没整好,或者有标记样本都不给够,想欺负窝打工人蛮? 哎呀也不一定都是这样,华哥团队就给出另一个可能:训练集中的一些未知类别的被搞成了其他类别。 不过是哪些囊个晓得来?姑且叫做unknown unknown classes,简称unknown unknowns。 对此,探索性机器学习来了,弄啥呢?如果未知未知类存在,就找到它并学习,over。原创 2021-02-08 11:21:30 · 797 阅读 · 4 评论 -
论文阅读 (九):A survey on instance selection for active learning (2012)
引入 论文地址:https://link.springer.com/article/10.1007/s10115-012-0507-8 主要内容:对主动学习的实例选择进行介绍,并将其分为以下两类: 1)基于独立同分布实例的不确定性; 2)考虑实例之间的关联。 所有图片源自原论文,无意侵权。原创 2020-08-22 10:14:41 · 544 阅读 · 0 评论 -
论文阅读 (48):A Library of Optimization Algorithms for Organizational Design
2005Levchuk:用于组织设计的优化算法库 (A library of optimization algorithms for organizational design);背景:介绍用以解决各组织规范设计中广泛出现的优化问题算法库,以满足特定任务的需要。设计过程不同阶段的特定优化算法的使用,引发了任务结构与组织、资源/约束之间的有效匹配问题。该算法库构成了所设计软件环境的核心,用于综合与其任务一致的组织。这允许分析者在多个目标和约束中获得可接受的权衡,且满足计算复杂性与解决方案效率的原创 2022-04-20 19:44:07 · 442 阅读 · 0 评论 -
论文阅读 (十四):Ensemble Transfer Learning Algorithm (2018TrResampling)
引入 论文地址:https://ieeexplore.ieee.org/document/8194845 摘要要点: 1)迁移学习和集成学习是解决训练数据与测试数据分布不同的新趋势。 2)本文设计了当训练数据不充分时的集成迁移学习框架,以提高分类精度: 2.1)提出用于迁移学习的加权重采样方法,命名为TrResampling。在每次迭代中,对source domain中权重较大的数据进行重采样,并使用TrAdaBoost来调整source data和target data之间的权重;原创 2020-10-09 11:39:11 · 603 阅读 · 2 评论