自动驾驶3D占用预测(Occupancy Prediction)算法调研

本文首发于公众号【DeepDriving】,欢迎关注。

0. 前言

在自动驾驶感知任务中,传统的3D场景理解方法大多数都集中在3D目标检测上,难以描述任意形状和无限类别的真实世界物体。3D占用网络(Occupancy Network)是特斯拉在2022年提出的一种新型感知网络,这种感知网络借鉴了机器人领域中的占用网格建图的思想,将感知环境以一种简单的形式进行在线3D重建。简单来说,就是将机器人周围的空间划分为一系列网格单元,然后定义哪个单元被占用,哪个单元是空闲的,通过预测3D空间中的占用概率来获得一种简单的3D空间表示,这样就可以更全面地实现3D场景感知。

近期对最近几年自动驾驶领域中的3D占用网络算法(主要是基于纯视觉)和数据集做了一些调研,本文将做一个简单的汇总。

1. 论文和算法

### 关于高斯世界模型用于流式3D占用预测的研究 在研究领域中,高斯世界模型(Gaussian World Model, GWM)被广泛应用于表示复杂的三维环境。对于流式3D占用预测的任务而言,该方法通过利用动态变化场景中的稀疏性和局部性来实现高效建模。 #### 高斯世界模型概述 高斯世界模型采用一系列加权的各向异性高斯分布来近似复杂物体表面及其周围的空间结构[^1]。这些分布在空间上定义了一个概率场,其中每个位置处的概率反映了存在实体的可能性大小。这种方法不仅能够捕捉到精细几何特征,而且支持高效的渲染操作以及实时更新机制。 #### 流式处理框架设计 为了适应不断变化的真实世界条件并保持较低延迟,在线学习成为构建此类系统的必要组成部分之一。具体来说: - **增量训练**:当新数据到来时,仅需调整受影响部分对应的参数而无需重新计算整个模型; - **自适应分辨率管理**:根据不同区域的重要性自动调节细节程度; - **分布式存储与通信协议**:确保大规模环境下多节点间协作顺畅无阻塞。 ```python class GaussianWorldModel: def __init__(self): self.gaussians = [] def add_gaussian(self, mean, covar, weight): gaussian = {'mean': mean, 'covariance': covar, 'weight': weight} self.gaussians.append(gaussian) def predict_occupancy(self, point_cloud): occupancy_probabilities = [] for p in point_cloud: prob_sum = sum([g['weight'] * multivariate_normal.pdf(p, g['mean'], g['covariance']) for g in self.gaussians]) occupancy_probabilities.append(prob_sum) return np.array(occupancy_probabilities) ``` 上述代码片段展示了如何初始化一个简单的`GaussianWorldModel`类,并提供了一种基于输入点云数据预测占据情况的方法。实际应用中可能还需要考虑更多因素如噪声抑制、边界效应等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值