本文主要由AI撰写,各位辩证看待
(反正第一个警告的处理方式亲测有效)
.fillna()
带来的警告
FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set pd.set_option('future.no_silent_downcasting', True)
produce_solution = produce_solution.fillna(0)
解释
警告含义:
这个 FutureWarning
是来自 pandas 库的一个警告,表示在将来版本中,某些方法(如 .fillna()
、.ffill()
、.bfill()
)会有行为上的变化。
你在代码中调用了 produce_solution.fillna(0)
,该方法会用 0
来填充缺失值(NaN
)。但是,pandas 在执行这些操作时会发生 “下转型(downcasting)”,即在填充后,会自动将数据类型转换为更低的类型。例如,如果你的数据原本是浮动类型(float64),它可能会被转换为整数类型(int64),这可能会导致一些潜在的数据类型问题。
当前版本的 pandas 会发出这个警告,告知用户这种行为将在未来的版本中被修改。
未来行为:未来 pandas 会 不再自动进行这种下转型操作。如果你依然希望填充后保持原数据类型,你需要显式地调用 .infer_objects(copy=False)
来避免自动的类型转换。
如何处理?
1. 按照警告建议显式调用 infer_objects
如果你希望避免下转型并且不希望看到这个警告,可以在 fillna
之后调用 .infer_objects()
方法:
produce_solution = produce_solution.fillna(0)
produce_solution = produce_solution.infer_objects(copy