大数据学习(三十三)一分钟了解hdfs(通俗易懂版)

HDFS是为处理大规模数据而设计的分布式文件系统,支持大文件和批量文件的分布式存放。它为MapReduce、Spark等框架提供数据存储服务。文件在物理上按块存储,每个块默认有3个副本。Namenode管理文件元数据,Datanode存储数据块,SecondaryNameNode协助Namenode管理文件系统镜像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、hdfs前言

为何而诞生:需要将大文件、大批量文件,分布式存放在大量服务器上。

作用:为大数据分布式运算框架提供数据存储服务(mapreduce、spark等等)

(补充:hdfs是架在本地文件系统上面的分布式文件系统,它就是个软件,也就是用一套代码把底下所有机器的硬盘变成一个软件下的目录,和mysql没有什么区别,思想一样)

以上内容来自  HDFS全面详解_如月之恒-的博客-CSDN博客  博主讲的非常通俗易懂

二、hdfs的一些特点(节点、分块、副本存储)

1.HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

2.HDFS 默认保存 3 份副本

3.节点

namenode节点:当用户访问数据文件时,为了保证能够读取到每一个数据块,hdfs会有专门负责保存文件属性信息的节点,也就是 namenode节点。

datanode节点:hdfs首先把大文件切分成若干个小的数据块,再把这些数据块写入不同的节点,这个负责保存文件数据的节点就是 datanode 节点

SecondaryNameNode节点 定期把NameNode的 fsimage 和 edits 下载到本地,再将它们加载到内存并进行合并,最后把合并后新的 fsimage 返回NameNode

三、hdfs的优缺点。

待更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值