7-1 Maximum Subsequence Sum (25 分)

7-1 Maximum Subsequence Sum (25 分)

经典的最大子列和问题。
记得刚开始学数据结构时,MOOC上就是从这个题引出的。当时听的很明白,但是在做这道题目时,一直没法做出来,想了很多的办法,但是一直做不出来。
最后,还是从网上找了答案才明白了怎么做。
今天突然灵光 一现,两次线性扫描就可以解决了,虽然时间慢一点呢,但是很好理解。

代码:
#include <iostream>
using namespace std;
int main(){
    int N,a[10010];
    int Max = -1,sum = 0,start = 0,end = 0;
    scanf("%d",&N);
    for(int i=0;i<N;i++)
        scanf("%d",&a[i]);
    for(int i=0;i<N;i++){
        sum += a[i];
        if(sum < 0){
            sum = 0;
            continue;
        }
        if(sum > Max){
            Max = sum;
            end = i;
        }
    }
    sum = 0;
    for(int i=end;i>=0;i--){
        sum += a[i];
        if(sum == Max){
            start  = i;
        }
    }
    if(Max < 0) printf("0 %d %d",a[0],a[N-1]);
    else printf("%d %d %d\n",Max,a[start],a[end]);
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值