概率论的基本公式(概率导论第一章)
文章目录
1. 概率模型
1.1 概率模型的基本组成
- 样本空间 Ω \Omega Ω,这是一个试验的所有可能结果的集合。
- 概率律,概率律为试验结果的集合 A A A(称为事件)确定一个非负数 P ( A ) P(A) P(A)(称为事件 A A A的概率)。而这个非负数刻画了我们对事件 A A A的认识或所产生的信念的程度。
1.2 概率公理
-
非负性,对一切事件 A A A,满足 P ( A ) ≥ 0 P(A) \ge 0 P(A)≥0。
-
可加性,设 A A A和 B B B为两个互不相交的集合(概率论中称为互不相容的事件),则他们的并满足
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B).
更一般地,若 A 1 , A 2 , . . . A_1,A_2,... A1,A2,...是不相容的事件序列,则他们的并满足
P ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ P(A_1 \cup A_2 \cup ···) = P(A_1) + P(A_2) + ··· P(A1∪A2∪⋅⋅⋅)=P(A1)+P(A2)+⋅⋅⋅.
-
归一化,整个样本空间 Ω \Omega Ω(称为必然事件)的概率为 1 1 1,即 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1。
1.3 概率律的若干性质
考虑一个概率律,令 A 、 B A、B A、B和 C C C为事件.
- 若 A ⊂ B A \subset B A⊂B则 P ( A ) ≤ P ( B ) P(A) \le P(B) P(A)≤P(B).
- P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B)=P(A) + P(B) - P(A \cap B) P(A∪B)=P(A)+P(B)−P(A∩B).
- P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A \cup B)\le P(A) + P(B) P(A∪B)≤P(A)+P(B).
- P ( A ∪ B ∪ C ) = P ( A ) + P ( A c ∩ B ) + P ( A c ∩ B c ∩ C ) P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C) P(A∪B∪C)=P(A)+P(Ac∩B)+P(Ac∩Bc∩C).
2. 条件概率
2.1条件概率的性质
- 设事件 B B B满足 P ( B ) > 0 P(B) > 0 P(B)>0,则给定 B B B之下,事件 A A A的条件概率有下式给出:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \cfrac{P(A\cap B)}{P(B)} P(A∣B)=P(B)P(A∩B)
- 这个条件概率在同一个样本空间 Ω \Omega Ω上给出了一个新的(条件)概率律。凡是现有的概率律的所有性质对这个条件概率都是适用的。
- 由于条件概率所关心的事件都是事件 B B B的子事件,可以把条件概率看成 B B B上的概率律,即把事件 B B B看成全空间或必然事件。
- 当试验的 Ω \Omega Ω为有限集,并且所有试验结果为等可能的情况下,条件概率律可由下式给出
P ( A ∣ B ) = 事 件 A ∩ B 的 试 验 结 果 数 事 件 B 的 结 果 数 P(A|B) = \cfrac{事件A\cap B的试验结果数}{事件B的结果数} P(A∣B)=事件B的结果数事件A∩B的试验结果数
2.2 乘法法则
假定所有涉及的条件概率都是正的,我们有
P
(
∩
i
=
1
n
A
i
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
P
(
A
3
∣
A
1
∩
A
2
)
⋅
⋅
⋅
P
(
A
n
∣
∩
i
=
1
n
−
1
A
i
)
P(\cap_{i=1}^nA_i)=P(A_1)P(A_2|A_1)P(A_3|A_1\cap A_2)···P(A_n|\cap_{i=1}^{n-1}A_i)
P(∩i=1nAi)=P(A1)P(A2∣A1)P(A3∣A1∩A2)⋅⋅⋅P(An∣∩i=1n−1Ai)
3. 全概率定理和贝叶斯准则
3.1 全概率定理
设
A
1
,
A
2
,
⋅
⋅
⋅
,
A
n
A_1,A_2,···,A_n
A1,A2,⋅⋅⋅,An是一组互不相容的事件,形成样本空间的一个分割(每一个试验结果必定使得其中一个事件发生)。 又假定对每一个
i
i
i,
P
(
A
i
)
>
0
P(A_i)>0
P(Ai)>0。则对于任何事件
B
B
B,下列公式成立
P
(
B
)
=
P
(
A
1
∩
B
)
+
⋅
⋅
⋅
+
P
(
A
n
∩
B
)
=
P
(
A
1
)
P
(
B
∣
A
1
)
+
⋅
⋅
⋅
+
P
(
A
n
)
P
(
B
∣
A
n
)
P(B)=P(A_1 \cap B)+···+P(A_n \cap B) \\ =P(A_1)P(B|A_1)+···+P(A_n)P(B|A_n)
P(B)=P(A1∩B)+⋅⋅⋅+P(An∩B)=P(A1)P(B∣A1)+⋅⋅⋅+P(An)P(B∣An)
3.2 贝叶斯准则
设
A
1
,
A
2
,
⋅
⋅
⋅
,
A
n
A_1,A_2,···,A_n
A1,A2,⋅⋅⋅,An是一组互不相容的事件,形成样本空间的一个分割(每一个试验结果必定使得其中一个事件发生)。 又假定对每一个
i
i
i,
P
(
A
i
)
>
0
P(A_i)>0
P(Ai)>0。则对于任何事件
B
B
B,只要他们满足
P
(
B
)
>
0
P(B)>0
P(B)>0,下列公式成立
P
(
A
i
∣
B
)
=
P
(
A
i
)
P
(
B
∣
A
i
)
P
(
B
)
=
P
(
A
i
)
P
(
B
∣
A
i
)
P
(
A
1
)
P
(
B
∣
A
1
)
+
⋅
⋅
⋅
+
P
(
A
n
)
P
(
B
∣
A
n
)
P(A_i|B) = \cfrac{P(A_i)P(B|A_i)}{P(B)} \\ = \cfrac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1)+···+P(A_n)P(B|A_n)}
P(Ai∣B)=P(B)P(Ai)P(B∣Ai)=P(A1)P(B∣A1)+⋅⋅⋅+P(An)P(B∣An)P(Ai)P(B∣Ai)
4. 独立性
4.1 独立性
- 两个事件 A A A和 B B B称为相互独立的,如果他们满足
P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P(A∩B)=P(A)P(B)
若
B
B
B还满足
P
(
B
)
>
0
P(B)>0
P(B)>0,则独立性等价于
P
(
A
∣
B
)
=
P
(
A
)
P(A|B)= P(A)
P(A∣B)=P(A)
- 若 A A A与 B B B相互独立,则 A A A与 B c B^c Bc也相互独立。
- 设事件 C C C满足 P ( C ) > 0 P(C)>0 P(C)>0,两个事件 A A A和 B B B称为在给定 C C C的条件下条件独立,如果他们满足
P ( A ∩ B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A\cap B|C) = P(A|C)P(B|C) P(A∩B∣C)=P(A∣C)P(B∣C)
若进一步假定
P
(
B
∩
C
)
>
0
P(B\cap C)>0
P(B∩C)>0,则
A
A
A和
B
B
B在给定
C
C
C的条件下的条件独立性与下面的条件是等价的
P
(
A
∣
B
∩
C
)
=
P
(
A
∣
C
)
P(A|B\cap C) = P(A|C)
P(A∣B∩C)=P(A∣C)
- 独立性并不蕴涵条件独立性,反之亦然。
4.2 几个事件的相互独立性的定义
设
A
1
,
A
2
,
⋅
⋅
⋅
,
A
n
A_1,A_2,···,A_n
A1,A2,⋅⋅⋅,An为
n
n
n个事件,若他们满足
P
(
⋂
i
∈
S
A
i
)
=
∏
i
∈
S
P
(
A
i
)
对
1
,
2
,
⋅
⋅
⋅
,
n
的
任
意
子
集
S
成
立
P\left(\bigcap_{i\in S}A_i \right) = \prod_{i \in S}P(A_i)对{1,2,···,n}的任意子集S成立
P(i∈S⋂Ai)=i∈S∏P(Ai)对1,2,⋅⋅⋅,n的任意子集S成立
则称
A
1
,
A
2
,
⋅
⋅
⋅
,
A
n
A_1,A_2,···,A_n
A1,A2,⋅⋅⋅,An为相互独立事件。
5. 计数法
计数法汇总:
- n n n个对象的排列数: n ! n! n!。
- n n n个对象中取 k k k个对象的排列数: n ! / ( n − k ) ! n!/(n-k)! n!/(n−k)!。
- n n n个对象中取 k k k个对象的组合数: ( n k ) = n ! k ! ( n − k ) ! \tbinom{n}{k}=\cfrac{n!}{k!(n-k)!} (kn)=k!(n−k)!n!
- 将 n n n个对象分成 r r r个组的分割数:其中第 i i i个组具有 n i n_i ni个对象:
( n n 1 , n 2 , ⋅ ⋅ ⋅ n r ) = n ! n 1 ! n 2 ! ⋅ ⋅ ⋅ n r ! \dbinom{n}{n_1,n_2,···n_r} = \cfrac{n!}{n_1!n_2!···n_r!} (n1,n2,⋅⋅⋅nrn)=n1!n2!⋅⋅⋅nr!n!