概率论的基本公式(概率导论第一章)

本文介绍了概率论的基本概念,包括概率模型的组成、概率公理、条件概率和全概率定理。详细讨论了概率律的性质,如非负性、可加性和归一化原则。同时,讲解了条件概率的定义及其性质,以及乘法法则的应用。全概率定理和贝叶斯准则作为重要工具,也在文中得到阐述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率论的基本公式(概率导论第一章)

1. 概率模型

1.1 概率模型的基本组成

  • 样本空间 Ω \Omega Ω,这是一个试验的所有可能结果的集合。
  • 概率律,概率律为试验结果的集合 A A A(称为事件)确定一个非负数 P ( A ) P(A) P(A)(称为事件 A A A的概率)。而这个非负数刻画了我们对事件 A A A的认识或所产生的信念的程度。

1.2 概率公理

  1. 非负性,对一切事件 A A A,满足 P ( A ) ≥ 0 P(A) \ge 0 P(A)0

  2. 可加性,设 A A A B B B为两个互不相交的集合(概率论中称为互不相容的事件),则他们的并满足

    P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B).

    更一般地,若 A 1 , A 2 , . . . A_1,A_2,... A1,A2,...是不相容的事件序列,则他们的并满足

    P ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ P(A_1 \cup A_2 \cup ···) = P(A_1) + P(A_2) + ··· P(A1A2)=P(A1)+P(A2)+.

  3. 归一化,整个样本空间 Ω \Omega Ω(称为必然事件)的概率为 1 1 1,即 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

1.3 概率律的若干性质

​ 考虑一个概率律,令 A 、 B A、B AB C C C为事件.

  1. A ⊂ B A \subset B AB P ( A ) ≤ P ( B ) P(A) \le P(B) P(A)P(B).
  2. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B)=P(A) + P(B) - P(A \cap B) P(AB)=P(A)+P(B)P(AB).
  3. P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A \cup B)\le P(A) + P(B) P(AB)P(A)+P(B).
  4. P ( A ∪ B ∪ C ) = P ( A ) + P ( A c ∩ B ) + P ( A c ∩ B c ∩ C ) P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C) P(ABC)=P(A)+P(AcB)+P(AcBcC).

2. 条件概率

2.1条件概率的性质

  • 设事件 B B B满足 P ( B ) > 0 P(B) > 0 P(B)>0,则给定 B B B之下,事件 A A A的条件概率有下式给出:

P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \cfrac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)

  • 这个条件概率在同一个样本空间 Ω \Omega Ω上给出了一个新的(条件)概率律。凡是现有的概率律的所有性质对这个条件概率都是适用的。
  • 由于条件概率所关心的事件都是事件 B B B的子事件,可以把条件概率看成 B B B上的概率律,即把事件 B B B看成全空间或必然事件。
  • 当试验的 Ω \Omega Ω为有限集,并且所有试验结果为等可能的情况下,条件概率律可由下式给出

P ( A ∣ B ) = 事 件 A ∩ B 的 试 验 结 果 数 事 件 B 的 结 果 数 P(A|B) = \cfrac{事件A\cap B的试验结果数}{事件B的结果数} P(AB)=BAB

2.2 乘法法则

假定所有涉及的条件概率都是正的,我们有
P ( ∩ i = 1 n A i ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 ∩ A 2 ) ⋅ ⋅ ⋅ P ( A n ∣ ∩ i = 1 n − 1 A i ) P(\cap_{i=1}^nA_i)=P(A_1)P(A_2|A_1)P(A_3|A_1\cap A_2)···P(A_n|\cap_{i=1}^{n-1}A_i) P(i=1nAi)=P(A1)P(A2A1)P(A3A1A2)P(Ani=1n1Ai)

3. 全概率定理和贝叶斯准则

3.1 全概率定理

A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,,An是一组互不相容的事件,形成样本空间的一个分割(每一个试验结果必定使得其中一个事件发生)。 又假定对每一个 i i i P ( A i ) > 0 P(A_i)>0 P(Ai)>0。则对于任何事件 B B B,下列公式成立
P ( B ) = P ( A 1 ∩ B ) + ⋅ ⋅ ⋅ + P ( A n ∩ B ) = P ( A 1 ) P ( B ∣ A 1 ) + ⋅ ⋅ ⋅ + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1 \cap B)+···+P(A_n \cap B) \\ =P(A_1)P(B|A_1)+···+P(A_n)P(B|A_n) P(B)=P(A1B)++P(AnB)=P(A1)P(BA1)++P(An)P(BAn)

3.2 贝叶斯准则

A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,,An是一组互不相容的事件,形成样本空间的一个分割(每一个试验结果必定使得其中一个事件发生)。 又假定对每一个 i i i P ( A i ) > 0 P(A_i)>0 P(Ai)>0。则对于任何事件 B B B,只要他们满足 P ( B ) > 0 P(B)>0 P(B)>0,下列公式成立
P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( B ) = P ( A i ) P ( B ∣ A i ) P ( A 1 ) P ( B ∣ A 1 ) + ⋅ ⋅ ⋅ + P ( A n ) P ( B ∣ A n ) P(A_i|B) = \cfrac{P(A_i)P(B|A_i)}{P(B)} \\ = \cfrac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1)+···+P(A_n)P(B|A_n)} P(AiB)=P(B)P(Ai)P(BAi)=P(A1)P(BA1)++P(An)P(BAn)P(Ai)P(BAi)

4. 独立性

4.1 独立性

  • 两个事件 A A A B B B称为相互独立的,如果他们满足

P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P(AB)=P(A)P(B)

  若 B B B还满足 P ( B ) > 0 P(B)>0 P(B)>0,则独立性等价于
P ( A ∣ B ) = P ( A ) P(A|B)= P(A) P(AB)=P(A)

  • A A A B B B相互独立,则 A A A B c B^c Bc也相互独立。
  • 设事件 C C C满足 P ( C ) > 0 P(C)>0 P(C)>0,两个事件 A A A B B B称为在给定 C C C的条件下条件独立,如果他们满足

P ( A ∩ B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A\cap B|C) = P(A|C)P(B|C) P(ABC)=P(AC)P(BC)

  若进一步假定 P ( B ∩ C ) > 0 P(B\cap C)>0 P(BC)>0,则 A A A B B B在给定 C C C的条件下的条件独立性与下面的条件是等价的
P ( A ∣ B ∩ C ) = P ( A ∣ C ) P(A|B\cap C) = P(A|C) P(ABC)=P(AC)

  • 独立性并不蕴涵条件独立性,反之亦然。

4.2 几个事件的相互独立性的定义

A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,,An n n n个事件,若他们满足
P ( ⋂ i ∈ S A i ) = ∏ i ∈ S P ( A i ) 对 1 , 2 , ⋅ ⋅ ⋅ , n 的 任 意 子 集 S 成 立 P\left(\bigcap_{i\in S}A_i \right) = \prod_{i \in S}P(A_i)对{1,2,···,n}的任意子集S成立 P(iSAi)=iSP(Ai)1,2,,nS
则称 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,,An为相互独立事件。

5. 计数法

计数法汇总

  • n n n个对象的排列数 n ! n! n!
  • n n n个对象中取 k k k个对象的排列数 n ! / ( n − k ) ! n!/(n-k)! n!/(nk)!
  • n n n个对象中取 k k k个对象的组合数 ( n k ) = n ! k ! ( n − k ) ! \tbinom{n}{k}=\cfrac{n!}{k!(n-k)!} (kn)=k!(nk)!n!
  • n n n个对象分成 r r r个组的分割数:其中第 i i i个组具有 n i n_i ni个对象:

( n n 1 , n 2 , ⋅ ⋅ ⋅ n r ) = n ! n 1 ! n 2 ! ⋅ ⋅ ⋅ n r ! \dbinom{n}{n_1,n_2,···n_r} = \cfrac{n!}{n_1!n_2!···n_r!} (n1,n2,nrn)=n1!n2!nr!n!

关于概率论与数理统计第一章公式总结如下: ### 随机事件及其概率基本概念 - **样本空间** $\Omega$: 实验的所有可能结果组成的集合。 - **随机事件**: 样本空间中的一个子集,通常用大写字母 A, B, C 等表示。 - **必然事件**: 总是发生的事件,等于整个样本空间$\Omega$。 - **不可能事件**: 绝不会发生的事件,记作空集$\emptyset$。 - **互斥事件(A 和 B)**: 若两个事件没有共同的结果,则称为互斥事件。即 $A \cap B = \emptyset$ - **对立事件($\bar{A}$ 或者 $A^c$)**: 对于任意事件A,它的对立事件是指不属于A的所有元素组成的新事件。 ### 概率公式的定义及性质 - **非负性**: 对任何事件A的概率P满足 $0 \leq P(A) \leq 1$. - **归一化条件**: 必然事件的概率为1,即 $P(\Omega)=1$;不可能事件的概率为0,即 $P(\emptyset)=0$。 - **有限可加性/完全可加性**: 如果有两个或者更多的互斥事件$A_i$, 则这些事件之和的概率等于各事件概率之和。对于一系列互斥事件${A_1, A_2,...,A_n}$, $$P(A_1 + A_2 + ...+ A_n) = P(A_1)+P(A_2)+...+P(A_n).$$ - **逆事件的概率**: 对立事件的概率加上原事件的概率总和为1,即 $P(A) + P(\bar{A})=1$。 - **差事件的概率**: 当B⊆A时,有 $P(A-B) = P(A) - P(B)$。 - **乘法原理**: 计算复合实验中不同阶段选择的方法总数。如果有m种方式做某件事并且n种方式做另一件不同的事,则共有$m*n$种方式完成这两件事。 - **古典概型计算公式**: 设E是一个等可能性的随机试验,S是对应的样本空间,含有N个基本事件,其中有利场合含M个基本事件,则任取一个基本事件属于有利场合的概率为: $$P=\frac{\text{有利情况的数量}}{\text{所有可能出现的情况数量}}=\frac{M}{N}.$$ 以上是一些基础的概念以及相关的公式,在更深入的学习过程中还会遇到条件概率、全概率公式、贝叶斯定理等内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值