Description
有一个由1…9组成的数字串,长度为n(1 ≤ n ≤ 100)。
问,如果将m(m ≤ 90)个加号(’+’)插入到这个数字串中,在各种可能形成的加法表达式中,值最小的那个表达式的值是多少?
本题不需考虑高精度。
Input
多测试用例。每个测试用例占一行。
每行是两个整数m和n,意义如上所述。
Output
每个测试用例输出一行:值最小的加法表达式的值。
Sample Input
3 1234
2 1334
1 2333
4 1111111111
5 12345678
Sample Output
10
20
56
55
72
第一眼看到题目我们就会想到用搜索,但是时间复杂度太高了会超时。
动态规划
dp[i][j]表示用i个+号划分从0~j的字符串得到的最小值
dp[ j ][ i ]=dp[j-1][r]+pow_1(r+1,i,s) (j<=r<i)
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
long long dp[101][101];
long long pow_1(int x,int y,string s)//将字符串转化为数
{
long long sum=0;
for(int i=x;i<=y;i++)
sum=sum*10+(s[i]-'0');
return sum;
}
int main()
{
int n;
string s;
while(cin>>n>>s)
{
memset(dp,0,sizeof(dp));
dp[0][0]=s[0]-'0';
int len=s.size();
for(int i=1;i<len;i++)
{
dp[0][i]=dp[0][i-1]*10+(s[i]-'0');
for(int j=1;j<=n&&j<=i;j++)
{
if(len-i-1<(n-j))
continue;
dp[j][i]=dp[j-1][j-1]+pow_1(j,i,s);
for(int r=j;r<i;r++)
{
long long sum=dp[j-1][r]+pow_1(r+1,i,s);
if(dp[j][i]>sum)
{
dp[j][i]=sum;
}
}
}
}
cout<<dp[n][len-1]<<endl;
}
}