自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

转载 Datawhale学习计划:| 算法梳理——任务3

决策树算法梳理 信息论基础 熵和条件熵 信息增益和基尼指数的理解 不同分类算法以及应用场景 回归树的原理 原理 防止过拟合手段 一.什么是过度拟合数据? 过度拟合(overfitting)的标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据. overfittingt...

2019-05-18 18:52:17 158

转载 Datawhale学习计划:| 算法梳理——任务2

1、逻辑回归和线性回归的联系和区别 有助于理解 区别和联系 1.回归问题的应用场景(预测的结果是连续的,例如预测明天的温度,23,24,25度) 回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。 另外,回归分析用在神经网络上,其最上层是不需要...

2019-05-14 15:36:48 131

原创 线性回归原理理解(几何意义上)

2019-05-12 10:41:10 1266

原创 Datawhale学习计划:| 算法梳理——任务1

Datawhale学习计划:| 算法梳理——任务1 1、监督学习 分类: 主要有两类:监督学习(Supervised learning)和非监督学习(Unsupervised learning)。 定义: 是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。 例子: 例1、房价预测 这是监督学习的很好的例子,监督学习是指...

2019-05-11 20:04:49 248

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除