- 博客(4)
- 收藏
- 关注
转载 Datawhale学习计划:| 算法梳理——任务3
决策树算法梳理 信息论基础 熵和条件熵 信息增益和基尼指数的理解 不同分类算法以及应用场景 回归树的原理 原理 防止过拟合手段 一.什么是过度拟合数据? 过度拟合(overfitting)的标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据. overfittingt...
2019-05-18 18:52:17
158
转载 Datawhale学习计划:| 算法梳理——任务2
1、逻辑回归和线性回归的联系和区别 有助于理解 区别和联系 1.回归问题的应用场景(预测的结果是连续的,例如预测明天的温度,23,24,25度) 回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。 另外,回归分析用在神经网络上,其最上层是不需要...
2019-05-14 15:36:48
131
原创 Datawhale学习计划:| 算法梳理——任务1
Datawhale学习计划:| 算法梳理——任务1 1、监督学习 分类: 主要有两类:监督学习(Supervised learning)和非监督学习(Unsupervised learning)。 定义: 是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。 例子: 例1、房价预测 这是监督学习的很好的例子,监督学习是指...
2019-05-11 20:04:49
248
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人