
deepbayes
文章平均质量分 94
贝叶斯深度学习
AlgoCraft
有好奇心的算法工程师
公众号:进击的萨博
个人网站:jaykay233.github.io(停更比较久,时机合适会重启更新)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
deepbayes: VI回顾和GMM近似推断
本文回顾了变分推断(VI)的基本公式和两种主要方法——平均场变分推断(Mean Field VI)和参数化变分推断(Parametric VI)。重点以高斯混合模型(GMM)为例,探讨了其在聚类问题中的应用。GMM通过假设数据由多个高斯分布混合生成,实现软聚类,相比K-means更具灵活性。文章详细推导了GMM的训练过程,包括EM算法的E步(计算潜在变量后验分布)和M步(参数优化)。原创 2025-06-11 19:28:12 · 1181 阅读 · 0 评论 -
deepbayes lecture3:隐变量模型
**隐变量模型**是一种强大的统计建模工具,它可以帮助我们理解和分析数据中隐藏的结构和关系。在许多实际问题中,我们观察到的数据往往是不完整的,或者数据生成的过程受到一些我们无法直接观测到的因素的影响。隐变量模型通过引入**隐变量**(latent variables)来解释这些隐藏的因素,从而更准确地描述数据的生成过程。原创 2025-06-10 10:07:31 · 507 阅读 · 0 评论 -
deepbayes lecture1: 贝叶斯框架简介
本文学习的贝叶斯框架是一种基于概率的机器学习方法,通过贝叶斯定理结合先验知识与观测数据更新对模型参数的信念。与频率主义不同,它将参数视为随机变量,能编码先验知识并提供估计不确定性信息。共轭先验的使用简化了计算,贝叶斯方法在数据有限时表现更优,且能通过后验分布全面反映参数不确定性。原创 2025-06-09 17:57:22 · 471 阅读 · 0 评论 -
deepbayes lecture2:变分推断
本文学习的变分推断是机器学习中近似贝叶斯推断的有效方法,它将后验推断转化为优化问题,通过最小化KL散度寻找与真实后验分布接近的简单分布。相比MCMC,变分推断速度更快、可扩展性强。其核心是最大化证据下界(ELBO),常见的方法包括平均场近似和坐标上升变分推断等。原创 2025-06-09 18:01:18 · 1051 阅读 · 0 评论