Python的N种性能测试工具(timeit、profile、cProfile、line_profiler、memory_profiler、objgraph、Pyinstrument、PyCharm)

文章介绍了Python中的几种性能测试工具,包括timeit模块用于简单运行时间测试,profile和cProfile提供函数运行详细统计,line_profiler针对代码行级性能分析,memory_profiler关注内存使用,Pyinstrument提供直观的代码执行层次视图,以及PyCharm内置的图形化性能测试工具,这些工具帮助开发者优化Python代码性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、timeit

        timeit只输出被测试代码的总运行时间,单位为秒,没有详细的统计。

示例代码:

import timeit


def fun():
    lst = []
    for i in range(100000):
        lst.append(i * i)


print(timeit.timeit('fun()', 'from __main__ import fun', number=1))
print(timeit.timeit('fun()', 'from __main__ import fun', number=100))

运行结果:

2、profile

profile:纯Python实现的性能测试模块,接口和cProfile一样。

示例代码:

import profile


def fun():
    lst = []
    for i in range(100000):
        lst.append(i * i)


print(profile.run('fun()'))

运行结果:

参数解析:

  • ncall:函数运行次数
  • tottime: 函数的总的运行时间,减去函数中调用子函数的运行时间
  • 第一个percall:percall = tottime / nclall
  • cumtime:函数及其所有子函数调整的运行时间,也就是函数开始调用到结束的时间。
  • 第二个percall:percall = cumtime / nclall 

3、cProfile

        c语言实现的性能测试模块,接口和profile一样。

示例代码:

import cProfile


def fun():
    lst = []
    for i in range(100000):
        lst.append(i * i)


print(cProfile.run('fun()'))

运行结果:

参数解析:

        ncalls、tottime、percall、cumtime含义同profile。

4、line_profiler

        略

5、memory_profiler

        略

6、objgraph

        略

7、Pyinstrument

详见博文:python中代码性能分析Pyinstrument库_IT之一小佬的博客-CSDN博客

8、PyCharm图形化性能测试工具

详见博文:PyCharm的Profile工具进行python代码性能分析_IT之一小佬的博客-CSDN博客

参考博文:

Python的7种性能测试工具:timeit、profile、cProfile、line_profiler、memory_profiler、PyCharm图形化性能测试工具、objgraph_xiemanR的博客-CSDN博客_python cprofile flask 

作为Python的一个高级编程语言,有许多性能测试工具来帮助开发人员增强Python应用程序的性能。以下是Python的一些性能测试工具的介绍: 1. cProfile cProfilePython的内置性能分析模块。它提供了比Python标准模块profile更准确的性能分析数据,它可以为每个函数提供准确的时间分析数据。使用方法如下:在需要测试的函数加上@profile装饰(即在函数前加上@profile)。运行命令如下: ```python python -m cProfile your_script.py ``` 2. memory_profiler memory_profilerPython的一个第三方模块,它可以分析Python应用程序的内存使用情况。使用方法如下: 在需要测试的函数加上@profile装饰执行命令: ```python python -m memory_profiler your_script.py ``` 3. line_profiler line_profilerPython的一个第三方模块,它可以分析Python应用程序的每行代码的执行时间。使用方法如下:在需要测试的函数加上@profile装饰运行命令如下: ```python kernprof -l -v your_script.py ``` 4. timeit timeitPython的内置模块,它可以用于度量小片段代码的执行时间。使用方法如下: ```python import timeit timeit.timeit('your_code_statement', number=10000) ``` 5. PyCharm profiler PyCharm是一个流行的Python集成开发环境,它包含一个性能分析工具,可以让你更好地了解你的代码。使用方法如下:运行 PyCharm,打开您的Python项目,单击 Run -> Profile,然后 PyCharm 将使用其性能分析器运行您的代码。 6. profile 该模块用于在 Python 中进行性能分析。它可以显示每个函数调用的执行时间,并为您提供有关应用程序性能瓶颈的详细信息。使用方法如下: ```python import profile profile.run('your_code_statement') ``` 7. unittest unittest是Python的内置模块之一,它用于Python应用程序的单元测试。单元测试可以帮助你确定Python应用程序中的错误和bug。 此模块还可以用于性能测试。 使用方法如下:编写一个测试用例类,在其中编写测试函数。运行命令如下: ```python python -m unittest test_module.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值