Docker GPU依赖安装

Docker GPU介绍请参考docker 容器访问 GPU 资源使用指南

安装流程参考:install-guide.html#installing-with-apthttps://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-apt

  • 配置生产存储库:
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://
### 如何在Docker中使用GPU安装相关工具 为了能够在Docker容器内利用GPU资源,通常需要遵循特定的配置流程。对于基于NVIDIA GPU的情况,官方提供了专门的支持包——`nvidia-docker`来简化这一过程。 #### 安装NVIDIA Docker支持 确保主机已经正确安装了NVIDIA驱动程序之后,可以按照如下方式设置环境: 1. **更新现有软件源** 推荐先同步最新的软件列表以获得最新版本的信息。 ```bash sudo yum update -y ``` 2. **移除旧版Docker组件** 如果先前已安装过其他版本的Docker,则应先行清理这些残留文件,防止潜在冲突[^1]: ```bash sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-engine ``` 3. **安装必要的依赖项** 添加NVIDIA GPG密钥,并注册仓库以便后续操作顺利进行: ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo ``` 4. **实际部署NVIDIA Container Toolkit** 执行命令完成最终安装步骤: ```bash sudo yum install -y nvidia-container-toolkit sudo systemctl restart docker ``` 此时便完成了基础环境搭建工作,在此基础上创建的新镜像即具备访问物理机上GPU的能。 #### 构建带有GPU加速的应用场景 考虑到具体应用场景的需求差异较大,这里提供一种通用方法用于构建交互式的GPU容器,并通过`docker commit`保存更改后的状态作为新映像[^2]。 ```python import torch print(torch.cuda.is_available()) # 测试PyTorch能否识别到可用的CUDA设备 ``` 上述Python脚本可用于验证当前环境中是否存在有效的GPU单元;当返回True时表示成功启用了硬件加速功能。 针对某些特殊模型转换需求,比如从Hugging Face下载预训练权重并通过GGML格式优化后加载至llama.cpp运行时,可借助第三方开源项目如akx/ggify实现自动化处理流程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值