中级统计师-统计学基础知识-第七章 回归分析

第七章 时间序列分析 学习笔记

第一节 时间序列的基本形式

1. 时间序列的定义与分类

  • 定义:按时间顺序记录的观测值序列,反映现象随时间变化的过程
  • 分类
    • 绝对数时间序列
      • 时期序列(可加,如GDP季度数据)
      • 时点序列(不可加,如年末人口数)
    • 相对数时间序列(如年轻员工占比,不可加)
    • 平均数时间序列(如班级平均成绩序列)

2. 时间序列分析目的

  • 建立时间序列模型(认识随机机制)
  • 基于历史数据进行预测

第二节 时间序列的分析指标

1. 水平分析指标

(1)发展水平
  • 定义:时间序列中各时期的观测值 ( y_t )
  • 基期水平 vs 报告期水平
(2)增长量
  • 逐期增长量:( y_t - y_{t-1} )
  • 累计增长量:( y_t - y_0 )
  • 关系:累计增长量 = 逐期增长量之和
(3)平均发展水平
  • 时期序列
    yˉ=∑i=1nyin \bar{y} = \frac{\sum_{i=1}^n y_i}{n} yˉ=ni=1nyi
  • 时点序列
    • 间隔相等:
      yˉ=y12+y2+⋯+yn2n−1 \bar{y} = \frac{\frac{y_1}{2} + y_2 + \cdots + \frac{y_n}{2}}{n-1} yˉ=n12y1+y2++2yn
    • 间隔不等:
      yˉ=∑i=1n−1(yi+yi+12⋅fi)∑i=1n−1fi \bar{y} = \frac{\sum_{i=1}^{n-1} \left( \frac{y_i + y_{i+1}}{2} \cdot f_i \right)}{\sum_{i=1}^{n-1} f_i} yˉ=i=1n1fii=1n1(2yi+yi+1fi)
(4)平均增长量

平均增长量=累计增长量n=yn−y0n \text{平均增长量} = \frac{\text{累计增长量}}{n} = \frac{y_n - y_0}{n} 平均增长量=n累计增长量=nyny0

2. 速度分析指标

(1)发展速度
  • 环比发展速度:( \frac{y_t}{y_{t-1}} )
  • 定基发展速度:( \frac{y_t}{y_0} )
  • 关系:环比发展速度连乘积 = 定基发展速度
(2)增长速度
  • 环比增长速度 = 环比发展速度 - 1
  • 定基增长速度 = 定基发展速度 - 1
(3)平均发展速度
  • 几何平均法
    xˉ=∏i=1nyiyi−1n=yny0n \bar{x} = \sqrt[n]{\prod_{i=1}^n \frac{y_i}{y_{i-1}}} = \sqrt[n]{\frac{y_n}{y_0}} xˉ=ni=1nyi1yi=ny0yn
  • 平均增长速度
    平均增长速度=xˉ−1 \text{平均增长速度} = \bar{x} - 1 平均增长速度=xˉ1

第三节 时间序列的探索性分析

  • 核心方法:绘制时间序列图(横轴时间,纵轴观测值)
  • 常见特征
    • 趋势性(如航空旅客人数增长)
    • 季节性(如节假日周期性波动)
    • 随机波动

第四节 时间序列的分解

1. 分解模型

  • 四要素
    • 长期趋势(( T_t ))
    • 季节变动(( S_t ))
    • 循环变动(( C_t ),周期不固定)
    • 不规则变动(( I_t ))
  • 简化模型
    • 加法模型:
      Yt=Tt+St+It Y_t = T_t + S_t + I_t Yt=Tt+St+It
    • 乘法模型:
      Yt=Tt⋅St⋅It Y_t = T_t \cdot S_t \cdot I_t Yt=TtStIt
  • 模型选择
    • 季节波动幅度稳定 → 加法模型
    • 季节波动幅度随趋势扩大 → 乘法模型

第五节 趋势分析

1. 趋势拟合法

  • 线性趋势模型
    yt=a+bt+It y_t = a + b t + I_t yt=a+bt+It
  • 非线性模型
    • 指数模型:
      Tt=a⋅bt T_t = a \cdot b^t Tt=abt
    • 二次模型:
      Tt=a+bt+ct2 T_t = a + b t + c t^2 Tt=a+bt+ct2

2. 移动平均法

  • n期简单移动平均
    y~t=1n∑i=0n−1yt−i \tilde{y}_t = \frac{1}{n} \sum_{i=0}^{n-1} y_{t-i} y~t=n1i=0n1yti
  • 应用原则
    • 消除季节性 → 取周期长度(如月度数据取( n=12 ))
    • 平滑程度要求高 → 增大( n )

3. 指数平滑法

  • 递推公式
    y~t=αyt+(1−α)y~t−1 \tilde{y}_t = \alpha y_t + (1 - \alpha) \tilde{y}_{t-1} y~t=αyt+(1α)y~t1
  • 平滑系数( \alpha )
    • ( \alpha \to 1 ),近期数据权重高(敏感度高)
    • 经验范围:( 0.1 \leq \alpha \leq 0.5 )

第六节 季节分析

1. 季节指数法(不考虑趋势)

  • 步骤
    1. 计算各年同月平均数 ( \bar{y}_i )
    2. 计算总平均数 ( \bar{y} )
    3. 季节指数:
      Si=yˉiyˉ S_i = \frac{\bar{y}_i}{\bar{y}} Si=yˉyˉi

2. 季节指数法(考虑趋势)

  • 步骤
    1. 用回归模型拟合长期趋势 ( \hat{y}_t = a + b t )
    2. 剔除趋势:
      yty^t \frac{y_t}{\hat{y}_t} y^tyt
    3. 对剔除趋势的序列计算季节指数

经典例题

例题1(时点序列判断)

【单选题】 属于时点序列的是(C)
A. 某高校科研经费到账额
B. 某企业利税额
C. 某地区年末人口数
D. 某地区粮食产量

解析:时点序列反映某一瞬间水平,不可加。

例题2(移动平均计算)

【单选题】 2018年三期移动平均值为(D)
数据:2015-2019年人均消费水平(元)为2000、2090、2200、2350、2560
A. 6640
B. 7110
C. 2213
D. 2370

解析:2018年移动平均值为:
2200+2350+25603=2370 \frac{2200 + 2350 + 2560}{3} = 2370 32200+2350+2560=2370


总结对比表

指标/方法核心公式/定义
平均发展水平时期序列:( \sum y_i / n );时点序列:加权平均法
平均增长速度( \sqrt[n]{\frac{y_n}{y_0}} - 1 )
移动平均法( \tilde{y}t = \frac{1}{n} \sum{i=0}^{n-1} y_{t-i} )
指数平滑法( \tilde{y}t = \alpha y_t + (1-\alpha)\tilde{y}{t-1} )
季节指数不考虑趋势:( S_i = \frac{\bar{y}_i}{\bar{y}} );考虑趋势:先剔除趋势再计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟意昶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值