Python解析json数据并保存为csv文件

本文详细介绍了如何使用Python通过json库解析JSON文件,提取所需数据,并将其转换为pandas DataFrame,最终保存为CSV文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python解析json数据并保存为csv文件

首先导入两个包:

import json
import pandas as pd

打开json 文件并读取:

with open('2.json', encoding='utf-8') as f:
    line = f.readline()
    d = json.loads(line)
    f.close()

读取的json数据会以字典的形势保存,按照字典的读取方式获取自己想要的数据:

datas_x = []
datas_y = []

for dss in d:
    datas_x.append(float(dss["pos"]["x"]))
    datas_y.append(float(dss["pos"]["z"]))

将数据保存到列表中,然后创建pandas的DataFrame,DataFrame是由多种类型的列构成的二维标签数据结构。

path_x = pd.Series(datas_x)
path_y = pd.Series(datas_y)

path_df = pd.DataFrame()
path_df['pathx'] = path_x
path_df['pathy'] = path_y

最后将数据保存到csv中。

filepath = "E:\\python\\python\\2021\\202104\\0409\\path_data.csv"
path_df.to_csv(filepath, index=False, header=False)

完整代码:

import json
import pandas as pd

filepath = "E:\\python\\python\\2021\\202104\\0409\\path_data.csv"

with open('2.json', encoding='utf-8') as f:
    line = f.readline()
    d = json.loads(line)
    f.close()

datas_x = []
datas_y = []

for dss in d:
    datas_x.append(float(dss["pos"]["x"]))
    datas_y.append(float(dss["pos"]["z"]))

path_x = pd.Series(datas_x)
path_y = pd.Series(datas_y)

path_df = pd.DataFrame()
path_df['pathx'] = path_x
path_df['pathy'] = path_y

path_df.to_csv(filepath, index=False, header=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值