数据处理之二值化

二值化是一种将数据简化为0和1的技术,常用于图像处理中的边缘识别。通过设定阈值,高于该值的元素设为1,低于或等于的设为0。案例展示了如何使用scikit-learn的Binarizer API进行二值化操作,将矩阵中的元素转换为二进制形式,便于后续分析和模型简化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二值化

有些业务并不需要分析矩阵详细完整的数据(例如:图像的边缘识别, 只需要分析出边缘即可), 可以根据事先给定的阈值, 用0和1表示特征值不高于/高于阈值. 二值化后, 矩阵中每个元素非0即1, 达到简化数学模型的目的。二值化在图像处理中经常会。

二值化相关API:

# 获取二值化器对象
bin = sp.Binarizer(threshold=阈值)
# 基于二值化器转换原始样本矩阵
result = bin.transform(原始样本矩阵)

案例:

"""
二值化
"""
import numpy as np
import sklearn.preprocessing as sp

samples = np.array([
		[17., 100., 4000],
		[20., 80.,  5000],
		[23., 70.,  5500]])

bin = sp.Binarizer(threshold=80)
r_samples = bin.transform(samples)
print(r_samples)
[[0. 1. 1.]
 [0. 0. 1.]
 [0. 0. 1.]]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值