本文所用文件的链接
链接:https://pan.baidu.com/s/1RWNVHuXMQleOrEi5vig_bQ
提取码:p57s
轮廓系数
轮廓系数用于评估一个聚类模型的性能. 一个好的聚类: 内密外疏. 同一个聚类内部的样本要足够密集, 不同聚类之间的样本要足够稀疏.
轮廓系数的计算规则: 针对样本空间中的一个特定样本, 计算它与所在聚类其它样本的平均距离a, 以及该样本与距离最近的另一个聚类中所有的样本的平均距离b. 那么该样本的轮廓系数为(b-a)/max(a,b). 若将整个样本空间中所有样本的轮廓系数取算数平均值, 就可以把该结果作为聚类划分的指标.
该公式结果处于:[-1, 1]. -1代表分类效果比较差, 1代表分类效果好. 0代表聚类重叠, 没有很好的划分聚类.
import sklearn.metrics as sm
score = sm.silhouette_score(
输入集, 输出集,
sample_size=样本数,
# 距离算法: euclidean 欧几里得距离
metric='euclidean'
)
案例:
"""
demo07_silhouette_score.py 轮廓系数
"""
import numpy as np
import sklearn.cluster as sc
import matplotlib.pyplot as mp
import sklearn.metrics as sm
x = np.loadtxt('../ml_data/multiple3.txt',
delimiter=',')
# KMeans聚类
model = sc.KMeans(n_clusters=4)
model.fit(x)
centers = model.cluster_centers_
print(centers)
pred_y = model.predict(x)
# 输出轮廓系数
score = sm.silhouette_score(x, pred_y,
sample_size=len(x), metric='euclidean')
print(score)
# 划分聚类边界
l, r = x[:, 0].min()-1, x[:, 0].max()+1
b, t = x[:, 1].min()-1, x[:, 1].max()+1
n = 500
grid_x, grid_y = np.meshgrid(
np.linspace(l, r, n),
np.linspace(b, t, n))
mesh_x = np.column_stack((grid_x.ravel(),
grid_y.ravel()))
pred_mesh_y = model.predict(mesh_x)
grid_z = pred_mesh_y.reshape(grid_x.shape)
mp.figure('Kmeans', facecolor='lightgray')
mp.title('Kmeans', fontsize=16)
mp.xlabel('X',fontsize=14)
mp.ylabel('Y',fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x,grid_y,grid_z,cmap='gray')
mp.scatter(x[:,0], x[:,1], c=pred_y, cmap='jet',
label='points')
# 绘制聚类中心点
mp.scatter(centers[:,0], centers[:,1],
marker='+', s=230, c='orangered')
mp.legend()
mp.show()
# 轮廓系数,
0.5773232071896658