
深度学习学习笔记
文章平均质量分 78
记录学习
陈子迩
不会写代码的弟弟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Windows系统vscode安装与配置G++、Cmake
VSCode,全称为Visual Studio Code,是由微软开发的一款轻量级,跨平台的代码编辑器。大家能来搜用VSCode配置c/c++,想必也知道VSCode的强大,可以手握一个VSCode同时编写如C,C++,C#,Java,python等等语言的代码。得益于在VSCode上可以下载很多不同种类的插件,可以给vscode添加很多扩展功能,如代码高亮美化,代码补全和代码检查等。原创 2025-03-31 16:39:50 · 1476 阅读 · 0 评论 -
X-AnyLabeling的安装与使用指南
相比于从源代码运行,GUI 运行环境提供了更便捷的体验,用户无需深入了解底层实现,只需解压便可直接使用。因此,建议根据具体需求和偏好,在从源代码运行和使用 GUI 环境之间做出选择,以优化用户体验。NOTE] 如需使用以下高级功能,请参考相应文档安装额外依赖。有关如何使用 X-AnyLabeling 的详细说明,请参考相应的。⚠️ 请注意,如果您需要 GPU 加速,应在。为避免冲突,请执行以下命令卸载第三方相关包。首先下载好anaconda。参数随时查看可用的选项。字段设置为 'GPU'。原创 2025-03-25 18:07:26 · 1882 阅读 · 4 评论 -
双目视觉路线,为什么一直没有存在感
例如,200 TOPS的芯片算力,如果利用率是10%,则实际算力只有20 TOPS,而32 TOPS的芯片算力,如果利用率提升到50%,实际算力就能达到16 TOPS。据单羿表示,鉴智已经实现了用AI算法去做双目立体视觉的效果,同时,团队的算法压缩能力可将模型的算力需求做到合理的尺度,进而将AI双目在可接受的成本范围内做到产品级的效果。总之,双目是一个很早就存在的技术路线,但存在感不高的原因一方面在于它的技术门槛较高(算法、制造工艺,质量一致性等),被欧美少数几个玩家维宁尔,大陆,博世,电装等把控;原创 2024-09-25 14:58:12 · 1172 阅读 · 0 评论 -
一段时间未使用github管理代码后:ssh: connect to host github.com port 22: Connection timed out
在使用Git将本地仓库推送到远程仓库的时候,发生了如下错误:“fatal: Could not read from remote repository.”在C盘——用户——你的主机名文件夹中找到.ssh文件夹;(此前配置SSH时会生成该文件夹)再次执行ssh -T [email protected],发现验证通过–接下来可以正常上传代码。在.ssh文件夹中新建文件 config,不带后缀(可以新建文本文档,去掉.txt后缀)使用notepad++(或其他方式)打开config文件,输入以下内容,保存后即可。原创 2024-09-18 18:05:50 · 472 阅读 · 0 评论 -
git使用遇到的报错合集:fatal: unable to access/OpenSSL SSL_read: SSL_ERROR_SYSCALL, errno 0/refusing to merge
Git是一个分布式版本控制系统,用于跟踪文件的变化并协调多个开发者之间的工作。它可以记录文件的修改历史,方便开发者回溯和比较不同版本的文件。Git还可以轻松地合并不同开发者的修改,并可以在不同的分支上同时开展工作。Git的设计目标是速度快、简单易用、支持大型项目和复杂的分支管理。以下是我在使用git的时候遇到的一些报错,我将其整理出来。原创 2024-08-08 10:45:25 · 1744 阅读 · 0 评论 -
python导出requirements.txt的三种方式
生成requirements.txt,pip freeze会将当前PC环境下所有的安装包都进行生成,再进行安装的时候会全部安装很多没有的包.此方法要注意。导出结果会存在路径,生成的requirements.txt文件在当前目录下。,这个工具的好处是可以通过对项目目录的扫描,发现使用了哪些库,生成依赖清单。生成的requirements.txt文件在当前目录下。生成的requirements.txt文件在当前目录下。step1:安装pipreqs(默认没有安装)在python项目的根目录下 使用。原创 2024-08-01 13:43:40 · 1337 阅读 · 0 评论 -
如何使用roboflow进行打标签和数据增强
Roboflow 是一个用于机器学习和计算机视觉项目的开源平台。它提供了一系列的工具和功能,帮助开发者和数据科学家更高效地处理图像数据,训练和部署机器学习模型。数据标记和增强:Roboflow 提供了一个用户友好的界面来标记图像数据,支持多种标记类型,如边界框、分割掩码、分类标签等。此外,它还提供了图像增强功能,可以自动增加数据集的多样性。模型训练:Roboflow 允许用户直接在平台上训练机器学习模型,支持多种流行的深度学习框架,如 TensorFlow、PyTorch 等。模型导出和部署。原创 2024-07-11 11:45:54 · 1556 阅读 · 0 评论 -
Yolov8模型调参大全:超详细解读每一个参数
defalut.yaml配置文件用于设置Yolov8模型的训练和预测参数。4.1. 类型/模式参数4.1.1. task: detect指定Yolov8的任务类型,默认为detect,您也可根据实际应用场景设置为segment、classify、pose等。4.1.2. mode: train指定Yolov8的运行模式,默认为train,您也可根据实际操作设置为val、predict、export、track、benchmark等。4.2. 训练参数4.2.1. model模型文件原创 2024-07-04 11:14:05 · 11466 阅读 · 1 评论 -
YOLOv8超参数解析
余弦学习率调度器可以帮助模型在训练过程中按照余弦函数的形状调整学习率,从而在训练初期使用较高的学习率,有助于快速收敛,而在训练后期逐渐降低学习率,有助于细致调整模型参数。通过调整输入图像的尺寸,进而可控制模型的输入大小,从而优化模型的准确性和速度。设置为False时,将不使用AMP,即使用常规的精度进行训练,通常是使用单精度浮点数(single-precision floating-point)。具体来说,设置为0.8表示使用训练集中80%的图像进行训练,剩下的20%将不参与训练。原创 2024-07-02 14:11:08 · 3353 阅读 · 0 评论 -
AnyLabeling自动打标签教程(学习笔记)
1、支持多边形,矩形,圆,线和点图像标注。2、通过YOLOv5 和 Segment Anything自动标注。3、支持文本检测,识别和KIE(关键信息提取)标注。4、支持英语,越南语,汉语。一、AnyLabeling安装使用Anaconda安装环境。1、安装环境。原创 2024-06-10 13:40:45 · 792 阅读 · 0 评论 -
简化YOLOv5的推理过程(学习笔记)
--HWC转CHW---扩展维度---numpy转tensor---转float32---预测--NMS--将检测框缩放至原始图尺寸--你需要的功能(截图、画检测框等)加载模型---动态resize图片大小---原创 2024-06-13 08:00:00 · 254 阅读 · 0 评论 -
YOLOv5的detect.py逐句注释教程(学习笔记)
detect.py主要有run(),parse_opt(),main()三个函数构成。原创 2024-06-11 08:00:00 · 429 阅读 · 0 评论 -
YOLOv5的predict.py逐句讲解(学习笔记)
因为太多依赖python的各种库,导致自己对YOLO的开发能力有所下降,最近准备重新整理一下YOLO系列的代码以供以后自己查阅。YOLOv5-v7.0将分类脱离出来了。predict.py为分类的推理代码。predict.py主要有run(),parse_opt(),main()三个函数构成。原创 2024-06-10 13:14:11 · 967 阅读 · 1 评论 -
【CVPR2023】可持续检测的Transformer用于增量对象检测
代码已开源:https://github.com/yaoyao-liu/CL-DETR本文旨在解决增量目标检测(IOD)问题,模型需要逐步学习新的目标类别,同时不忘记先前学到的知识。在这个背景下,论文提出了一种创新性的方法,称为ContinuaL DEtection TRansformer(CL-DETR),它基于Transformer架构,并允许有效地使用知识蒸馏(KD)和示例重播(ER)等技术来解决增量学习中的挑战。原创 2023-12-23 20:15:00 · 2321 阅读 · 1 评论 -
【ICCV2023】MMVP:基于运动矩阵的视频预测
本文提出的基于运动矩阵的视频预测框架(MMVP)是一个端到端可训练的双流管道。与以往的方法不同,以往的方法通常在相同的模块内处理运动预测和外观维护,MMVP通过构建外观无关的运动矩阵来解耦运动和外观信息。广泛的实验证明,MMVP在公共数据集上的表现优于最先进的方法,性能提升显著(在PSNR上提高了约1 dB,例如 UCF Sports数据集),而模型大小却显著减小(相当于84%或更小的模型尺寸)。与仅使用最后观察到的帧的信息不同,我们使用所有观察到的信息进行未来合成,并通过重复矩阵乘法来减小较早帧的权重。原创 2023-12-22 22:16:22 · 2137 阅读 · 3 评论 -
深入了解ViT模型(讲解代码)
视觉变换器(ViT)标志着计算机视觉演进的一个显著里程碑。ViT挑战了传统的观点,即图像最好通过卷积层进行处理,证明了基于序列的注意机制可以有效地捕捉图像中复杂的模式、上下文和语义。通过将图像分解为可管理的补丁并利用自我注意力,ViT捕捉了本地和全局关系,使其能够在各种视觉任务中表现出色,从图像分类到物体检测等等。在本文中,我们将深入探讨ViT分类的内部工作原理。ViT的核心思想是将图像视为一系列固定大小的补丁,然后将这些补丁展开并转换为1D向量。原创 2023-12-20 07:00:00 · 3648 阅读 · 0 评论 -
从零开始学习YOLOv5 保姆级教程
YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升Input: 输入部分是YOLOv5的起点,接收输入图像并将其进行预处理,将图像大小调整为模型所需的输入尺寸。Backbone: 骨干网络是YOLOv5的核心组成部分,负责从输入图像中提取特征。原创 2023-08-23 07:00:00 · 2402 阅读 · 0 评论 -
从零开始搭建一套SSD目标检测算法
SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。但是均匀的密集采样的一个重要缺点是训练比较困难,这主要是因为正样本与负样本(背景)极其不均衡(参见Focal Loss),导致模型准确度稍低。原创 2023-06-26 21:26:19 · 3028 阅读 · 8 评论 -
Pytorch安装教程:最新保姆级教程
PyTorch是一个开源的深度学习框架,提供了各种张量操作并通过自动求导可以自动进行梯度计算,方便构建各种动态神经网络。支持使用GPU/TPU进行加速计算。(Torch中文百科)2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:1、具有强大的GPU加速的张量计算(如NumPy)。2、包含自动求导系统的深度神经网络。(百度百科)原创 2023-08-14 11:19:29 · 1023 阅读 · 7 评论 -
最新Anaconda安装-保姆级教程
随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习而进入机器学习的第一步就是环境配置,那么今天就给大家带来一期机器学习的入门教程anaconda的安装配置Anaconda是一个强大的开源数据科学平台,它将很多好的工具整合在一起,极大地简化了使用者的工作流程,并能够帮助使用者解决一系列数据科学难题。要点提示:Anaconda自带python,所以不用安装其他版本的python,后续学习中如果需要其他版本的python了可以之后在安装,初学者安装太多的东西容易暴毙!原创 2023-08-14 10:51:09 · 3424 阅读 · 0 评论 -
opencv如何调用yolov3(Python版)
YOLO是“You Only Look Once”的简称,它虽然不是最精确的算法,但在精确度和速度之间选择的折中,效果也是相当不错。YOLOv3借鉴了YOLOv1和YOLOv2,虽然没有太多的创新点,但在保持YOLO家族速度的优势的同时,提升了检测精度,尤其对于小物体的检测能力。YOLOv3算法使用一个单独神经网络作用在图像上,将图像划分多个区域并且预测边界框和每个区域的概率。原创 2023-07-31 12:58:52 · 2694 阅读 · 0 评论 -
YOLOv8 保姆级教程(训练自己的数据集)
准备一份YOLO系列的数据集,这里就不演示voc转txt了,自己准备一个现成的就好。如果玩过YOLOv5 的,数据集直接可以拿来用。数据集放在YOLOv8的大目录下data.yaml文件放在如图目录下yaml 的格式可以仿照YOLOv8里的coco.yaml 也是沿用YOLOv5的格式,亲测没有问题。原创 2023-07-20 21:58:59 · 19245 阅读 · 3 评论 -
Ubuntu各个版本部署YOLOv5 保姆级教程
前面几篇文章详细讲解了cuda和cudnn及anaconda的安装: 注意此内容适配所有所有Ubuntu系统,因为YOLO的运行只与touch版本有关。原创 2023-03-27 14:29:17 · 3670 阅读 · 3 评论 -
YOLO系列详解(YOLO1-YOLO5)
YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。原创 2023-02-23 10:40:07 · 26771 阅读 · 11 评论 -
基于卷积神经网络的手写数字识别(自建模型)
卷积神经网络是一种多层的监督学习神经网络,隐含层的卷积层和池采样层是实现卷积神经网络特征提取功能的核心模块。该网络模型通过采用梯度下降法最小化损失函数对网络中的权重参数逐层反向调节,通过频繁的迭代训练提高网络的精度。数字识别是计算机从纸质文档、照片或其他来源接收、理解并识别可读的数字的能力,目前比较受关注的是手写数字识别。手写数字识别是一个典型的图像分类问题,已经被广泛应用于汇款单号识别、手写邮政编码识别,大大缩短了业务处理时间,提升了工作效率和质量。在处理如 图1 所示的手写邮政编码的简单图像分类任务时,原创 2022-12-04 14:37:52 · 3482 阅读 · 1 评论