#LangChain | RAG | LLM#LangChain LCEL_基本示例:提示 + 模型 + 输出解析器

前言

LCEL 可以轻松地从基本组件构建复杂的链,并支持开箱即用的功能,例如流式处理、并行性和日志记录。

基本示例:提示 + 模型 + 输出解析器

pip install --upgrade --quiet  langchain-core langchain-community langchain-openai、
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()

from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4")

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")
output_parser = StrOutputParser()
chain = prompt | model | output_parser
chain.invoke({
   
   "topic": "ice cream"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值