强化学习入门(二):on-policy与off-policy

一、名词解释即引入原因

1、名词解释:

在这里插入图片描述
翻译过来就是:
On-policy: 学习到的agent以及和环境进行互动的agent是同一个agent
Off-policy: 学习到的agent以及和环境进行互动的agent是不同的agent

直观理解就是:
On-policy:相当于你在打游戏,你在实战中变强。
Off-policy:相当于你在看直播,你在观摩中变强。

2、为何要引入 Off-policy:

为了避免不停地sample(这会很耗时间)
在这里插入图片描述
如果我们使用 π θ \pi_\theta πθ 来收集数据,那么参数 θ \theta θ 被更新后,我们需要重新对训练数据进行采样,这样会造成巨大的时间消耗。

引入Off-policy后,可以利用

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值