
《3D点云学习》
文章平均质量分 87
3D点云
X-Vision
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
光片技术执行 3D 测量(线结构光扫描或激光线三角测量)
光片技术(线结构光扫描)是一种基于三角测量原理的工业3D表面测量方法。系统由线激光投影仪和数字相机组成,两者呈30°-60°夹角,通过激光平面与物体表面相交形成变形轮廓线,相机采集图像后提取激光中心点,利用标定参数计算三维坐标。通过移动物体或扫描系统获取多组轮廓数据,最终拼接成完整三维点云。该技术具有非接触、高精度特点,广泛应用于工业检测、逆向工程等领域,其核心挑战在于标定精度、表面特性兼容性和运动同步控制。原创 2025-07-31 09:35:13 · 737 阅读 · 0 评论 -
3D手眼标定本质及应用
3D手眼标定技术解析 手眼标定是机器人视觉系统的关键技术,主要分为"眼在手中"和"眼在手外"两种模式。眼在手中模式将相机安装在机器人末端,标定目标为求解相机到工具坐标系的变换矩阵T_cam^tool;眼在手外模式则将相机固定在工作场景中,标定目标为相机到基坐标系的变换矩阵T_cam^base。标定流程包括:标定板选择(棋盘格/CharuCo板/圆点阵列)、数据采集(至少15个位姿)、相对运动计算、方程求解(常用Tsai-Lenz算法)和精度验证。OpenCVSharp原创 2025-07-28 17:09:34 · 896 阅读 · 0 评论 -
3D手眼标定全流程详解
摘要: 手眼标定是连接机器人与3D视觉系统的关键技术,用于建立相机与机器人基座/工具间的精确坐标转换。流程包括:1)硬件准备(工业机器人、3D相机、高精度标定板等);2)环境搭建(均匀照明、稳定支架);3)标定步骤(相机内参标定→多姿态数据采集→坐标系定义→矩阵计算→误差验证)。关键要点包括:位姿采集需覆盖80%工作空间、标定误差应小于预期精度2倍(如目标0.1mm时误差需<0.2mm)。典型应用场景涵盖精密装配、动态抓取等,建议每3个月或工艺变更后重新标定。通过规范操作可实现<0.1mm的定位原创 2025-07-22 16:23:35 · 1307 阅读 · 0 评论 -
2.5D技术详解
2.5D技术是一系列在二维媒介上模拟三维空间感的技术集合,通过视觉欺骗和高效渲染实现成本与效果的平衡。核心方法包括:伪3D图形(等轴测/斜轴测投影)、光影模拟、视差卷轴、预渲染3D、2.5D粒子系统等。这些技术能在保持较低复杂度的同时,创造接近3D的立体效果,广泛应用于游戏开发、UI设计和工程制图等领域。优势在于性价比高、性能友好且艺术表现力强,但也存在视角固定、制作复杂等局限。该技术特别适合需要立体感但受限于资源或性能的2D项目。原创 2025-07-16 15:14:30 · 471 阅读 · 0 评论 -
主流3D重建技术的系统梳理与对比
本文系统梳理了主流3D重建技术,从原理、精度、优缺点和应用场景进行全面对比。主动光学法包含结构光扫描、激光三角测量、飞行时间法和相位偏折术,适用于不同精度和表面特性的物体;被动光学法如立体视觉和运动恢复结构适合大场景重建;深度相机提供集成化方案;非光学法如CT和MRI适用于内部结构检测;深度学习重建是新兴方向。文章提供了选型决策树和对比表,建议根据物体表面类型、精度需求和成本综合选择最优方案,如反光件选相位偏折术,快速扫描用结构光,大场景采用SfM等。原创 2025-07-03 11:09:23 · 1003 阅读 · 0 评论 -
相位偏折术进行3D重建
相位偏折术是一种高精度非接触式三维测量技术,专为镜面、高反光表面设计。其核心是通过显示屏投射条纹图案,利用相机捕捉物体反射的变形条纹,通过相位提取和解算获得表面梯度场,再积分重建三维形貌。相比传统结构光技术,它具有超高精度(亚微米级)和分辨率优势,但需精密校准且对振动敏感。该技术广泛应用于光学元件检测、汽车钣金件测量等高精度场景,是镜面物体三维重建的理想解决方案。原创 2025-07-03 11:07:29 · 862 阅读 · 0 评论 -
3D点云--深度学习算法详解(Segmentation)
3D点云深度学习的核心挑战在于处理和。以下从基础架构到最前沿技术的完整解析,包含数学原理、PyTorch/C++实现和工程化技巧。原创 2025-06-21 08:40:58 · 649 阅读 · 0 评论 -
3D点云--物体识别与检测算法详解(Detection)
本文全面解析3D点云物体识别与检测技术,涵盖传统几何方法和深度学习方法。传统方法包括特征描述子+SVM和滑动窗口+3D HOG,而深度学习方法重点介绍PointNet系列和PV-RCNN框架。文章对比了2023年主流算法的性能指标,提供了Python和C++的端到端实现示例,并分享体素化加速、量化推理等优化技巧。最后展望多模态融合、4D时空检测等前沿方向,针对不同应用场景给出选型建议。核心挑战在于处理点云稀疏性、旋转不变性和实时性要求,技术路线需根据精度、速度需求权衡选择。原创 2025-06-21 08:40:43 · 1148 阅读 · 0 评论 -
3D点云--聚类算法详解( Clustering)
本文全面解析3D点云聚类方法,从传统算法到深度学习,涵盖数学原理与代码实现。传统方法包括欧式聚类、DBSCAN和K-Means++,适用于不同场景(如均匀密度分割、噪声处理等)。深度学习方法如Superpoint Graph和PointNet++结合特征学习,提升复杂结构处理能力。文章对比了算法特性(预设K值需求、噪声鲁棒性等),并给出选型指南:实时性要求高选欧式聚类,含噪声数据用DBSCAN,语义引导场景推荐深度学习。最后分享了工程优化技巧(降采样、并行化等),为点云分割提供完整解决方案。原创 2025-06-21 08:40:32 · 930 阅读 · 0 评论 -
3D点云--表面重建算法详解(Surface Reconstruction)
给定点云算法分类类型代表算法输出形式适用场景基于三角化三角形网格均匀稠密点云基于隐式函数隐式场 + 等值面噪声/孔洞数据基于深度生成参数化网格缺失区域补全。原创 2025-06-21 08:40:18 · 933 阅读 · 0 评论 -
3D点云--配准算法详解(Registration)
3D点云配准技术全解析:本文系统梳理了点云配准经典算法(ICP、NDT)与深度学习方法(PointNetLK、DCP),涵盖数学原理、PCL/Open3D/PyTorch实现及工程优化技巧。通过对比表格分析不同算法在初始位姿需求、适用场景、速度和精度等维度的差异,并给出多尺度配准、GPU加速和异常值剔除等优化方案。文章结合代码示例和数学推导,为点云配准任务提供从理论到实践的完整解决方案。原创 2025-06-21 08:40:05 · 794 阅读 · 0 评论 -
3D点云--关键点算法详解(Keypoints)
本文系统介绍了3D点云关键点检测的传统与深度学习方法。传统方法包括基于特征值的ISS算法、Harris3D角点检测和SIFT3D尺度空间方法,均配有数学推导和PCL/Open3D实现代码。深度学习方法重点解析了无监督的USIP网络和联合检测描述的D3Feat框架,提供PyTorch实现示例。文章还对比了关键点评估指标(重复性、独特性等),并从计算效率、适用场景等维度进行方法选型分析,为工程实践提供了完整的技术参考。代码覆盖C++和Python,兼顾性能和开发效率需求。原创 2025-06-21 08:38:09 · 672 阅读 · 0 评论 -
3D点云--特征描述算法详解(Feature)
3D点云特征描述方法解析:从传统手工特征到深度学习 本文系统介绍了3D点云特征描述技术,涵盖传统手工特征和深度学习方法。传统方法包括PFH(计算点对几何关系)、FPFH(快速加权版本)和SHOT(球形网格统计),分别适用于不同精度和效率需求的场景。深度学习方法重点解析了PointNet(全局特征提取)、DGCNN(动态图卷积)和3DFeatNet(联合检测与描述)等模型。文章还提供了特征评估指标(Recall@1、FMR等)和选型指南,比较了各方法在维度、速度和区分性上的差异。最后给出工程优化建议,如混合特原创 2025-06-21 08:38:00 · 620 阅读 · 0 评论 -
3D点云--搜索算法详解(Search)
3D点云搜索技术解析 本文系统介绍了3D点云搜索的核心算法与应用,涵盖KNN和半径搜索等基础操作。主要内容包括: 经典算法:详细解析KD-Tree和Octree的实现原理,提供PCL和Open3D的代码示例 性能优化:介绍nanoflann轻量级方案和Faiss大规模近似搜索技术 GPU加速:展示CUDA和Open3D的GPU加速方法 选型指南:对比不同算法在构建时间、查询速度和内存占用等维度的表现 特殊应用:提供带条件筛选搜索和半径搜索结合体素下采样的实现方案 文章最后给出了基于KD-Tree的法线估计完原创 2025-06-21 08:38:18 · 679 阅读 · 0 评论 -
3D点云--分割算法详解(Segmentation)
3D点云分割是理解场景结构的关键任务,主要分为语义分割、实例分割和部件分割三类。传统方法包括基于区域生长的平面分割(适用于平面检测)和欧式聚类分割(用于物体级分割)。深度学习方法中,PointNet通过逐点特征提取实现语义分割,但缺乏局部上下文;PointNet++通过层次化采样改进局部特征;PointCNN则利用χ-Transform实现高效卷积。实例分割方面,3D-BoNet直接预测实例框和掩码,而PointRCNN采用两阶段方法。部件分割则可通过DGCNN的动态图卷积捕捉局部几何特征。这些方法在代码实原创 2025-06-20 13:55:06 · 720 阅读 · 0 评论 -
3D点云--采样算法详解(sample)
摘要:3D点云采样算法用于降低数据量或提取关键特征点,主要包括随机下采样、体素网格采样、最远点采样(FPS)、曲率敏感采样、泊松盘采样、ISS关键点采样和基于深度学习的方法。随机采样速度快但可能丢失特征;体素采样均匀降维;FPS覆盖性好但计算复杂;曲率采样保留几何细节;泊松盘采样保证最小间距;ISS适合配准任务;深度学习方法(如SampleNet)可端到端优化。各类方法均提供Python(Open3D/PyTorch3D)和C++(PCL)实现代码,适用于不同场景需求。原创 2025-06-20 13:50:00 · 376 阅读 · 0 评论 -
3D点云--滤波算法详解(Filtering)
摘要:3D点云滤波算法用于去除噪声和冗余数据,同时保留几何特征。本文详解了6种经典算法:1) 统计滤波(基于邻域距离剔除离群点);2) 半径滤波(按邻域密度过滤);3) 体素滤波(下采样);4) 高斯滤波(加权平滑);5) 双边滤波(结合颜色/法线差异);6) 直通滤波(坐标裁剪)。每种算法均附原理说明和Python/C++代码实现(基于PCL/Open3D)。对比表显示统计滤波适合激光雷达去噪,体素滤波适合高效下采样。建议根据场景组合使用,并通过可视化工具调参。(150字)原创 2025-06-20 13:37:09 · 603 阅读 · 0 评论 -
SLAM技术全面知识结构详解
摘要: SLAM(同步定位与建图)是机器人、自动驾驶等领域的核心技术,涵盖定位、建图与数据关联三大问题。其技术体系包括: 分类:按传感器(视觉/激光/多模态)、算法(滤波/图优化)划分; 系统组成:前端(特征匹配、里程计)、后端(优化与闭环检测)、建图(栅格/点云/语义地图); 主流算法:如ORB-SLAM3(视觉)、LOAM(激光)、VINS-Fusion(视觉-惯性); 关键技术:传感器融合、位姿优化、回环检测; 应用:自动驾驶、AR/VR、无人机等。发展趋势包括语义SLAM、轻量化部署等,需结合数学、原创 2025-06-13 11:19:41 · 796 阅读 · 0 评论 -
3d点云--相关可落地项目资料
3D点云开源项目精选(150字摘要) 本文整理覆盖工业、机器人、自动驾驶等领域的实用3D点云开源项目,含部署指南与代码链接。工业检测推荐3D-PatchCore(无监督缺陷检测)和PointNet++分类模型;机器人抓取提供GraspNet(6DoF预测)和SeGG(语义抓取)方案;自动驾驶包含Cylinder3D(LiDAR分割)和LIO-SAM(高精地图)。三维重建工具如Open3D-MVS支持多视角重建,医疗领域含牙齿建模ToothNet。部署工具涵盖Docker化环境和边缘设备优化方案(如Jetso原创 2025-06-12 13:14:53 · 676 阅读 · 0 评论 -
3D点云--全面解析(配合代码示例和项目链接)
以下是关于的全面解析与开源资源汇总,涵盖及。原创 2025-06-12 13:13:40 · 818 阅读 · 0 评论 -
3D点云--VTK库算法全面列举
VTK是一个强大的开源可视化库,提供丰富的2D/3D计算机图形学、图像处理和可视化算法。原创 2025-06-10 11:34:44 · 731 阅读 · 0 评论 -
3D点云--pcl-master的功能及使用
PCL(Point Cloud Library)是一个C++开源库,提供全面的3D点云处理功能,包括IO操作、滤波、特征提取、分割、配准和表面重建等核心算法。支持Linux和Windows安装,提供从基础点云显示到高级ICP配准的完整API示例。该库采用模块化设计,广泛应用于计算机视觉和机器人领域,并有丰富的官方文档和社区资源支持。PCL整合了点云处理全流程工具链,是3D数据处理领域的标准解决方案。原创 2025-06-10 11:12:14 · 359 阅读 · 0 评论 -
3D点云--PclSharp库功能及使用
PclSharp是Point Cloud Library的C#封装,为.NET开发者提供点云处理功能。主要功能包括点云操作、特征提取、配准、分割、滤波和可视化。通过NuGet安装相关组件即可使用。基础示例展示了点云加载保存、滤波、法线估计和可视化等操作。使用时需注意原生PCL依赖和数据类型的匹配,以及内存管理问题。该库适用于3D视觉、机器人、AR和自动驾驶等领域,为C#生态提供了重要的点云处理工具。原创 2025-06-10 11:06:36 · 432 阅读 · 0 评论 -
3D点云--ActiViz.NET.x64库功能及使用
ActiViz.NET.x64是VTK的.NET封装库,专为处理大规模3D点云数据设计。文章介绍了从环境搭建到点云显示的基本流程,包括创建点集、映射器和渲染器。针对大数据处理,提供了LOD渲染、GPU加速等优化技术,以及点云滤波、分割等处理功能的实现方法。同时涵盖了文件I/O操作、WinForms/WPF集成方案和性能优化建议,如八叉树分区和并行处理。ActiViz.NET.x64在科学计算和点云处理方面具有算法丰富性和性能优势,但学习难度较高。原创 2025-06-10 10:22:34 · 397 阅读 · 0 评论 -
3D点云--Kitware.VTK(Visualization Toolkit)功能及核心算法详解
VTK(Visualization Toolkit)是一个开源的、跨平台的计算机图形学、图像处理和可视化系统,由Kitware公司开发。它提供了丰富的算法和高级工具箱,支持3D计算机图形、图像处理和可视化。原创 2025-06-10 09:10:26 · 544 阅读 · 0 评论 -
3D点云--SLAM技术详解
点云SLAM(Simultaneous Localization and Mapping)是指利用三维点云数据进行同时定位与建图的技术,广泛应用于自动驾驶、机器人导航、AR/VR等领域。其核心是通过传感器(如激光雷达LiDAR、RGB-D相机)获取环境的三维点云数据,实时估计自身运动并构建环境地图。原创 2025-06-06 15:43:26 · 701 阅读 · 0 评论 -
3D点云--常见文件格式及特点
摘要: 本文系统解析了主流3D点云文件格式及其特性,涵盖PCD、PLY、LAS、OBJ、E57、XYZ等格式的编码方式、属性支持、典型应用及性能对比。重点分析PCD的二进制压缩与自定义字段、LAS的行业分类标准、PLY的网格兼容性,并提供格式转换代码示例(如PCD→PLY、LAS→CSV)。通过决策树指导格式选择,并介绍Draco、USDZ等前沿压缩技术。测试显示,PCD二进制压缩格式在加载效率上表现最优(480MB文件1.8s),而LAS/PLY更适合专业场景。根据需求推荐:算法开发用PCD,跨平台共享选原创 2025-06-06 11:24:27 · 1092 阅读 · 0 评论 -
3D点云--面试题解析(深入篇)
本文整理了30+ 3D点云核心面试题,涵盖数学原理、算法优化、工业实战和深度学习等方向。内容包括:点云协方差矩阵与曲率关系推导、Kabsch算法详细步骤、ICP改进技巧(动态阈值、双向匹配等)、八叉树与KD-tree性能对比、隧道变形监测流程、多LiDAR时间同步方案,以及Transformer在点云中的创新应用(PointFormer、Swin3D等)。文章还提供了Python/C++代码示例和实测数据对比,适合准备点云相关技术面试的开发者参考。原创 2025-06-06 11:20:51 · 453 阅读 · 0 评论 -
3D点云--面试题解析(进阶篇)
以下是额外补充的 **20+ 3D点云高频面试题及深度解析**,涵盖理论推导、算法细节、工程实践和前沿方向,助你全面备战原创 2025-06-06 11:10:39 · 540 阅读 · 0 评论 -
3D点云--面试题解析(基础篇)
这篇3D点云面试指南系统性地整理了核心技术要点,包含基础理论、核心算法、性能优化和实战应用。内容涵盖点云数据结构特性、RANSAC/ICP等关键算法原理、K近邻搜索加速策略,以及深度学习模型和行业解决方案。特别提供了PCL/C++和Python代码示例,并针对常见面试陷阱题给出专业解答建议。全文采用技术术语与实现细节相结合的方式,既适合快速回顾核心概念,又能帮助深入理解工程实现中的优化技巧,是准备3D视觉和点云处理岗位面试的实用参考资料。原创 2025-06-06 11:09:32 · 831 阅读 · 0 评论 -
3D点云--PCL库使用方法详解(C++版本)
本文详细介绍了C++版PCL库的3D点云处理技术,涵盖环境配置、基础操作、点云滤波、配准、分割、特征提取和可视化等核心模块。通过Ubuntu系统安装PCL库和CMake项目配置示例,展示了点云文件读写、数据类型转换和体素降采样等基础操作。在高级应用方面,详细解析了ICP/NDT配准算法、RANSAC平面分割、欧式聚类以及法线/FPFH特征提取的实现方法。最后提供了PCL Visualizer的多视口可视化方案,所有代码均经过验证,可直接应用于实际项目开发。本文为3D点云处理提供了从入门到实践的完整技术路线。原创 2025-06-06 10:56:35 · 480 阅读 · 0 评论 -
3D点云--PCL库使用方法详解(python版本)
本文详细介绍了Python版PCL库(python-pcl)在3D点云处理中的应用,涵盖安装配置、基础操作、核心算法和可视化方法。主要内容包括:环境安装建议(推荐Linux系统),点云文件读写与NumPy互转,常用滤波方法(体素降采样、离群点去除),ICP配准算法实现,RANSAC平面分割与欧式聚类,以及利用Open3D进行可视化。文章还提供了性能优化技巧,并指出python-pcl的局限性及替代方案(如Open3D)。最后通过一个完整案例演示地面分割与物体检测流程。代码示例丰富,适合Python开发者快速原创 2025-06-06 10:55:02 · 686 阅读 · 0 评论 -
3D点云--Open3D库使用方法详解(C++版本)
本文详细介绍了Open3D C++版3D点云处理的完整流程,包括环境配置、基础操作、点云滤波、配准、分割重建和可视化等核心功能。重点对比了C++与Python接口的性能差异,突出了C++在内存访问效率、并行计算和GPU加速方面的优势。内容涵盖从源码编译到实际应用的完整代码示例,特别强调通过Eigen矩阵操作避免数据拷贝、OpenMP并行化等性能优化技巧,为需要高性能3D点云处理的开发者提供了实用指南。原创 2025-06-06 10:33:03 · 641 阅读 · 0 评论 -
3D点云--Open3D库使用方法详解(python版本)
摘要:本文提供Open3D库的3D点云处理全流程指南,涵盖环境安装(Python/CUDA版本)、数据读写、点云生成/编辑、降采样/离群点去除等预处理方法,详细讲解ICP和基于特征的配准技术。进阶内容包含RANSAC平面分割、DBSCAN聚类算法,以及泊松/滚球法三维重建。可视化部分介绍基础显示和交互式选点技巧,配合代码示例(如体素降采样、FPFH特征计算等),适用于从基础操作到工业级点云处理的开发需求。原创 2025-06-06 10:31:01 · 639 阅读 · 0 评论 -
3D点云--PCL库算法全面列举
PCL 3D点云处理全解析:算法、代码与实战对比 本文全面梳理PCL(Point Cloud Library)核心功能,涵盖点云处理全流程: 1️⃣ 模块架构 - 详解7大核心模块(I/O、滤波、特征、配准等)及典型算法(ICP、RANSAC、泊松重建) 2️⃣ 代码实现 - 提供C++/Python双版本关键代码(如体素滤波、法线估计、ICP配准) 3️⃣ 工业级特性 - 对比Open3D突出PCL在复杂场景下的优势(更丰富的算法、定制化参数) 4️⃣ 性能优化 - 涉及KDTree加速、并行计算等工程实原创 2025-06-06 10:15:13 · 673 阅读 · 0 评论 -
3D点云--Open3D库算法全面列举
Open3D 3D点云处理全攻略 本文系统介绍了Open3D库的核心功能,涵盖点云处理的完整流程: 1️⃣ 数据I/O:支持PLY/PCD等格式读写,与Numpy高效互转 2️⃣ 滤波降噪:体素降采样、统计/半径离群值去除 3️⃣ 特征提取:法向量估计、FPFH特征计算 4️⃣ 配准对齐:ICP精配准与RANSAC全局配准方案 5️⃣ 分割聚类:RANSAC平面分割、DBSCAN聚类 6️⃣ 三维重建:泊松重建与滚球法实现曲面建模 7️⃣ 可视化:交互式查看与自定义渲染 8️⃣ 高级功能:点云裁剪、距离计算原创 2025-06-06 10:11:09 · 998 阅读 · 0 评论 -
3D点云--核心处理技术详解
3D点云处理技术综述 摘要:本文系统介绍了3D点云处理的核心技术与应用。点云作为三维空间离散点的集合,其处理流程包含获取、预处理、特征提取、分割、分类、配准与压缩等关键技术环节。文中详细剖析了各环节的主流方法,包括传统几何算法(如ICP配准、RANSAC分割)和深度学习方法(如PointNet系列)。同时还介绍了PCL、Open3D等常用处理工具,以及在自动驾驶、工业质检等领域的典型应用案例。随着传感器和计算技术的发展,点云处理正从传统方法向数据驱动的智能方向演进,在数字孪生、AR/VR等领域展现出广阔前景原创 2025-06-06 09:58:00 · 1083 阅读 · 0 评论 -
3D点云--知识结构和学习路线
需要掌握多领域的知识,包括数学基础、编程能力、点云算法原理、深度学习应用等。如果你有某个方向特别感兴趣(如 SLAM / 3D 生成),可以深入阅读相关论文和代码!,适合不同阶段的学习者。原创 2025-06-06 09:46:41 · 769 阅读 · 0 评论 -
3D点云--常用的软件、开源库及数据集
本文整理了3D点云处理领域的常用工具和资源,分为以下几类:首先介绍开源库与框架,包括基础处理工具PCL、Open3D,以及深度学习框架PyTorch3D等;其次推荐可视化与商业软件,如CloudCompare和Autodesk ReCap;然后列举通用与标注数据集,包括ShapeNet、KITTI等;最后概述NeRF等新兴趋势和学习资源。不同需求可选择对应工具,如快速开发用Open3D,工业应用选PCL,学术研究用PyTorch3D配合数据集。原创 2025-06-06 09:41:18 · 1064 阅读 · 0 评论