2021年发表在TMI上的一项工作,主要工作内容是数据保真层和双域。
现存问题和拟解决问题:
在设计层析重建算法时,需要考虑两个主要因素,即重建质量和重建速度。目前,滤波反投影法(FBP)被广泛用作标准算法,因为它可以按照解析解快速地重建出高质量的图像。然而,FBP假定可以访问从对象的所有视图收集的测量结果。在LA和SV条件下使用FBP重建都是高度不适定的,产生的图像质量不理想,具有严重的伪影和高噪声。以往的有限视角层析重建算法可以分为两大类:基于模型的迭代重建算法和基于深度学习的重建算法。通过迭代最小化预定义的图像域正则化和采样正弦图的不一致性,MBIR可以生成高质量的图像。正则化的常见选择包括全变分、字典学习和非局部补丁。然而,MBIR方法计算量大且耗时,因为它们依赖于重复的正反投影。此外,仅基于先验假设使用正则化需要仔细的超参数调整,并且往往会对重建结果产生偏差,尤其是在欠采样率较高的情况下。
关于工作现状和不足,此处省略八百字。
文章一句原话:虽然文献“A deep cascade of convolutional neural networks for dynamic MR image reconstruction”、“DuDoRNet: Learning a dual-domain recurrent network for fast MRI reconstruction with deep t1 prior”提出了一种用于磁共振成像快速重建的k空间数据一致性层,但在层析重建中尚未对投影数据一致性层进行系统的研究。这该是本文的idea来源。(每天一个水论文小技巧,下把我也去抄to