[阅读笔记]NBNet: Noise Basis Learning for Image Denoising with Subspace Projection

这篇笔记不讲论文的故事铺垫 直接上模型和方法。

来源:CVPR2021

自然图像(三通道)去噪。

本文工作的创新不在于网络结构的创新,在于一个基生成工作(SSA模块)。

主要工作内容:

        a) 基数生成:从图像特征图生成子空间基向量;

        b) 投影:将特征图转化为信号子空间。

网络结构:

整体结构为最简单的U-Net, SSA模块的输入有X1和X2,分别来自下采样的特征图和经过下采样和上采样后的特征图。

基于X1和X2(信号图像的两个特征图,具体指什么后面说明)构建K维基向量{v1、v2、。。。vk},生成这个K维基向量仅通过一个端到端的多维输出。原理是X1和X2重叠,通道加倍,从通道和标准坐标角度来看,通过网络生成K个正交的基,即K个维度。K维基向量矩阵V中的K个v两两之间正交,原文描述构建投影矩阵P=V\left ( V^TV \right )^-V^T,此处做分析:我从数学角度来理解,这个就是个不同维度上的尺子,用这个P去处理X1可以得到X1在各个维度尺子上的衡量结果。(写到这里我才理解了作者的精髓)

作者的思想是通过特殊的矩阵变换将特征图揭成了好几个通道(至少在通道的角度来看,是这样),对于一般的自然图像来说,有红绿蓝三个通道,将其映射向一个标准空间坐标系内,就是对应两两正交的x y z轴,假设特征图有三个通道或者其他数量的通道,通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值