【论文笔记】FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin

原文链接:https://arxiv.org/abs/2311.12058

简介:占用预测能减轻3D目标检测中的长尾问题并处理形状复杂的物体,但3D体素级表达不可避免地引入计算和存储开销,阻碍了其应用。本文提出FlashOcc,用2D卷积进行BEV特征提取,随后使用通道到高度的变换,将BEV提升到3D空间。本文方法在性能、速度和存储消耗上均优于之前的sota。
在这里插入图片描述

1. 概述

在这里插入图片描述
如图所示,FlashOcc分为5个基本模块:2D图像编码器、视图变换模块、BEV编码器、占用预测模块、可选的时间融合模块。

图像编码器和视图变换模块可选择常用模型/方法(如ResNet+FPN与LSS)。

BEV编码器结构与图像编码器类似,包含主干和颈部网络。

2. 占用预测模块

首先将BEV特征通过卷积网络,随后进行通道到高度的操作(本质上为reshape)。将 B × C × W × H B\times C\times W\times H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值