BP神经网络matlab工具箱实现

这篇博客介绍了如何在MATLAB中使用NeuralNetFitting工具箱训练神经网络。首先,通过导入bodyfat数据集来创建训练样本,然后设置训练集、验证集和测试集的比例。接着,调整隐藏层节点数为4个,并进行训练。训练完成后,保存结果并用此网络对新数据进行预测。整个过程涵盖了神经网络训练和预测的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练工具箱中的神经网络

  1. 在选项卡APP中找到Neural Net Fitting
    在这里插入图片描述

  2. 点击next
    在这里插入图片描述

  3. 点击导入样本数据集,训练神经网络,本例中选择导入body fat数据集
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  4. 导入后会在工作取看到两个数据集,一个输入数据,一个输出目标数据
    在这里插入图片描述

  5. 点击next,出现训练集,验证集和测试集的比例,后两个可以更改,但一般情况下我们不进行更改
    在这里插入图片描述

  6. 点击net,出现隐藏层节点数设置,默认为10,根据训练效果选择隐藏层节点数,本例选择4个,利用matlab工具箱时,隐藏层的层数只能为1层。
    在这里插入图片描述

  7. 点击next后,点击Train,得到训练结果和仿真图
    在这里插入图片描述
    在这里插入图片描述

  8. 一直点击next,到如下界面,勾选需要保存的数据,一般勾选前四个即可,然后依次点击Save Results、finish。
    即可得到训练好的BP神经网络。
    在这里插入图片描述

用自己的数据进行预测

  1. 先将excel中的数据导入
    在这里插入图片描述
  2. 同样方法,将工具箱打开至如下界面,然后在下拉菜单中找到嗯我们需要的输入数据和输出数据
    在这里插入图片描述
  3. 后续步骤与上一部分相同。
    导入用来预测的数据,用训练好的网络,得到预测值。
    在这里插入图片描述
  4. 点击simple script 可在编辑器工作区查看源代码
    在这里插入图片描述
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值