spark streaming中遇到的问题
出现的问题
task数据分配不均
task数据分配不均的原因
由于我这个日志分析系统是使用direct模式从kafka拉取数据的, 在direct模式下, 通过KafkaUtils.createDirectStream(…)获取的DStream中的rdd的分区数是与kafka相对应的topic的分区数是一样的,且分区中的数据分布情况也是一样的.
这就导致了spark streaming获取的rdd的分区中只有一个是有数据的, 而task与分区也是一一对应关系, 所以就造成了只有一个task在处理数据.
解决问题
问题逐渐清晰了, 其实就是线上从kafka获取数据时, kafka中的分区数据分布不均, 导致部分task处理的数据量特别少, 集群cpu资源得不到充分利用.
而解决办法就是, 利用DStream.reparation(partitionNum), 对DStream进行重新分区, 请注意, reparation()函数会对数据做shuffle, 这就相当于将数据分配到了其他机器上.这样就能提高并行度, 提高集群cpu资源利用率.
拓展
1.(提高成本)Direct(直连的方法)需要采用checkpoint或者第三方储存来维护offsets(偏移量),
而Rexeiver-based是通过Zookeeper来维护Offsets,所以用Direct提高了用户的开发成本
2.(监控可视化)Receiver-based方式制定topic制定consumer的消费情况均能通过Zookeeper来监控,而Direct则没有这种便利,如果做到监控并可视化,则需要投入人力开发。