MCP开发实战(一)基于MCP协议的大模型网关——多个大模型API统一封装为标准化工具

基于MCP协议开发大模型网关的核心目标是将多个大模型API统一封装为标准化工具,通过MCP协议实现安全可控的调用。以下是结合用户代码与MCP协议特性的开发实践指南:


一、架构设计要点

  1. 协议层统一
    采用MCP 2024-11-05版协议,通过Streamable HTTP实现客户端与服务器的双向通信。相较于传统SSE,新协议支持动态升级HTTP请求为流式传输,简化了端点管理(如用户代码中的/mcp统一处理所有请求)。

  2. 网关核心功能
    • 多模型代理:每个大模型API封装为独立的MCP Tool(如gpt4-generateclaude3-summarize

    • 动态路由:根据请求参数自动选择最优模型(如根据model_type参数路由)

    • 流量控制:在MCP Server层实现请求限速与配额管理

  3. 安全机制
    • API密钥管理:通过Nacos等配置中心动态加载密钥(如用户代码中API_KEY的注入)

    • 权限校验:在tools/call阶段验证调用权限(参考网页5的沙箱环境方案)


二、MCP Server开发实践
关键代码改造

# 扩展多模型工具注册
TOOLS_REGISTRY["tools"].extend([
    {
        "name": "gpt4_generate",
        "description": "GPT-4文本生成接口,支持max_tokens参数控制长度",
        "inputSchema": {
            "type": "object",
            "properties": {
                "prompt": {"type": "string"},
                "max_tokens": {"type": "integer"}
            },
            "required": ["prompt"]
        }
    },
    {
        "name": "claude3_analyze",
        "description": "Claude 3多模态分析接口,支持图像URL输入",
        "inputSchema": {
            "type": "object",
            "properties": {
                "image_url": {"type": "string"},
                "analysis_type": {"type": "string"}
            }
        }
    }
])

# 添加模型调用处理逻辑
async def stream_model_inference(model_name: str, params: dict) -> AsyncIterator[bytes]:
    """统一处理大模型调用,返回流式结果"""
    # 示例:路由到不同模型后端
    if model_name == "gpt4_generate":
        async for chunk in openai_client.chat.completions.create(
            model="gpt-4", messages=[{"role": "user", "content": params["prompt"]}], stream=True
        ):
            yield json.dumps({"stream": chunk.choices[0].delta.content})
    elif model_name == "claude3_analyze":
        # 调用Claude API并流式返回...

配置管理优化

# 通过环境变量动态加载多模型配置
MODEL_CONFIG = {
    "gpt4": {"endpoint": os.getenv("GPT4_ENDPOINT"), "api_key": os.getenv("GPT4_KEY")},
    "claude3": {"endpoint": os.getenv("CLAUDE3_ENDPOINT"), "api_key": os.getenv("CLAUDE3_KEY")}
}

三、MCP Client开发关键
多模型负载均衡实现

# 在MultiHTTPMCPClient中添加智能路由
async def select_best_model(self, prompt: str) -> str:
    """根据prompt内容选择最优模型"""
    # 示例:使用轻量级模型进行路由决策
    routing_prompt = f"""
    根据用户输入判断最适合的模型:
    输入:{prompt}
    可选模型:{self.servers.keys()}
    返回JSON: {{"model": "model_name", "reason": "..."}}
    """
    response = await self.llm.chat([{"role": "user", "content": routing_prompt}])
    return json.loads(response.choices[0].message.content)["model"]

流式响应处理增强

# 改进call_local_tool以支持多模型流式输出
async def call_local_tool(self, full_name: str, args: Dict[str, Any]) -> str:
    srv_name, tool_name = full_name.split("_", 1)
    async for chunk in self.servers[srv_name].call_tool_stream(tool_name, args):
        # 实时将流式数据推送至前端
        websocket.send_text(chunk)  # 假设集成WebSocket
        yield chunk

四、部署与测试方案

  1. 容器化部署

    # 多阶段构建优化镜像大小
    FROM python:3.10-slim as builder
    RUN pip install mcp fastapi httpx uvloop
    
    FROM gcr.io/distroless/python3-debian11
    COPY --from=builder /usr/local/lib/python3.10/site-packages /usr/local/lib/python3.10/site-packages
    COPY ./src /app
    CMD ["/app/mcp_gateway.py"]
    
  2. 自动化测试
    使用MCP Inspector进行协议级验证:

    npx @modelcontextprotocol/inspector --url http://localhost:8000/mcp --tool get_weather
    

五、高级功能扩展

  1. 上下文感知路由
    通过MCP的Roots机制,让模型动态感知可用数据源:

    {
      "roots": [
        {"uri": "file:///mnt/models/gpt4", "name": "GPT-4模型仓库"},
        {"uri": "https://api.claude.ai/v3", "name": "Claude3生产端点"}
      ]
    }
    
  2. 混合执行模式
    结合Sampling机制实现人机协同:

    async def sensitive_operation(self, prompt: str):
        # 高风险操作需人工审核
        await self.llm.sampling_request(
            prompt, 
            approval_callback=lambda: input("是否允许执行此操作?(y/n)")
        )
    

六、性能优化建议

  1. 连接池管理

    # 使用httpx.AsyncClient保持长连接
    self.session = httpx.AsyncClient(
        limits=httpx.Limits(max_connections=100, max_keepalive_connections=20),
        timeout=httpx.Timeout(10.0, pool=5.0)
    )
    
  2. 协议级缓存
    通过MCP的context字段实现响应缓存:

    @mcp.resource("cache://{key}")
    def get_cached_response(key: str) -> dict:
        return redis.get(key) or {}
    

以上方案结合了用户代码与MCP协议的最佳实践,实现了大模型API的统一网关化。关键创新点包括动态模型路由、流式响应增强、混合执行模式等,既遵循协议规范,又扩展了生产级功能需求。

### 如何在Spring Boot项目中通过本地MCP调用百度API 要在Spring Boot项目中通过本地MCP(假设为某种微服务控制平面或代理层)调用百度API,通常需要完成以下几个方面的设计与实现: #### 1. 配置Spring Boot项目 创建个新的Spring Boot项目并引入必要的依赖项。可以通过`pom.xml`文件中的Maven依赖管理工具来添加所需的库[^1]。 ```xml <dependencies> <!-- Spring Web --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- HTTP Client (e.g., OkHttp or RestTemplate) --> <dependency> <groupId>org.apache.httpcomponents.client5</groupId> <artifactId>httpclient5</artifactId> </dependency> </dependencies> ``` #### 2. 设置百度API密钥和URL 百度提供了多种开放接口,例如自然语言处理、图像识别等。为了能够正常调用这些API,需先申请相应的API Key和Secret Key,并将其存储于项目的配置文件中(如`application.properties`或`application.yml`)。以下是示例配置: ```properties baidu.api.key=your_api_key_here baidu.api.secret=your_secret_key_here baidu.api.url=https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=${baidu.api.key}&client_secret=${baidu.api.secret} ``` #### 3. 实现HTTP请求逻辑 利用Spring框架内置的`RestTemplate`或者第三方库(如OkHttp),向百度服务器发送认证请求获取Access Token。随后可使用该Token发起具体功能调用。 ```java @Service public class BaiduApiService { @Value("${baidu.api.url}") private String baiduAuthUrl; public String getAccessToken() { RestTemplate restTemplate = new RestTemplate(); ResponseEntity<Map> responseEntity = restTemplate.getForEntity(baiduAuthUrl, Map.class); if(responseEntity.getStatusCode().is2xxSuccessful()) { Map<String, Object> responseBody = responseEntity.getBody(); return (String)responseBody.get("access_token"); } else { throw new RuntimeException("Failed to obtain access token from Baidu API."); } } public String callBaiduApi(String accessToken, String endpoint, MultiValueMap<String, String> params){ HttpEntity<MultiValueMap<String, String>> requestEntity = new HttpEntity<>(params); RestTemplate restTemplate = new RestTemplate(); String apiUrl = "https://aip.baidubce.com/rest/2.0/" + endpoint + "?access_token=" + accessToken; ResponseEntity<String> responseEntity = restTemplate.postForEntity(apiUrl, requestEntity, String.class); return responseEntity.getBody(); } } ``` 上述代码片段展示了如何封装个通用方法用于调用不同类型的百度云服务端点[^3]。 #### 4. MCP的作用与集成方式 如果存在所谓的"MCP"(Microservice Control Plane),则可能作为层中间件存在于应用和服务提供商之间。它负责路由转发、负载均衡以及安全策略实施等功能。对于这种情况下的开发流程来说,主要区别在于实际发出网络请求的目标地址不再是直接指向百度官方网关而是经过了内部部署好的MCP实例;同时还需要遵循其特定协议格式传递参数数据结构等等额外约束条件[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值