Graph Network基础知识
基本概念
- 图的表示
点和边
有向图、无向图
表示方法:邻接矩阵
(出度:由该点出发的线路数、入度:指向该点的线路数、子图、连通图:两两相互连通、连通分量:无向图中的极大连子图)
强连通图:参考向量首尾相连
弱连通图:一对节点不单向连通,去掉方向后是连通图
- 最短路径、图直径
最短路径:最短距离
图直径:两两结点最短路径最大值 - 中心性
度中心性:Ndegreen−1{N_{degree}\over{n-1}}n−1Ndegree
特征向量中心性:A∗x=λ∗xA*x=\lambda*xA∗x=λ∗x
中介中心性:经过该节点的最短路径其余两两节点的最短路径{经过该节点的最短路径}\over{其余两两节点的最短路径}其余两两节点的最短路径经过该节点的最短路径
连接中心性:n−1节点到其他节点最短路径之和{n-1}\over{节点到其他节点最短路径之和}节点到其他节点最短路径之和n−1
网页排序算法
(1)PageRank:类似水流的均分排序法
(2)HITS:
Netwokx代码
- 定义:pd.DataFrame()
定义起点、终点、权三个数列
nx.from_pandas_edgelist() - 度:nx.degree()
- 连通分量:nx.connected_components()
- 图直径:nx.diameter()
- 度中心性:nx.degree_centrality()
- 特征向量中心性:nx.eugenvector_centrality()
- 中介中心性:nx.betweens_centrality()
- 连接中心性:nx.closeness_centrality()
- nx.pagerank()
- nx.hits()