Graph Network基础知识

本文介绍了图网络的基本概念,包括有向图、无向图、邻接矩阵、度中心性、特征向量中心性等。同时,讲解了最短路径、图直径、连接中心性等在网络分析中的应用。此外,提到了PageRank和HITS两种网页排序算法,并展示了如何使用NetworkX库进行图操作和计算各种中心性指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph Network基础知识

基本概念

  1. 图的表示
    点和边
    有向图、无向图
    表示方法:邻接矩阵
    (出度:由该点出发的线路数、入度:指向该点的线路数、子图、连通图:两两相互连通、连通分量:无向图中的极大连子图)
    强连通图:参考向量首尾相连
    在这里插入图片描述

弱连通图:一对节点不单向连通,去掉方向后是连通图
在这里插入图片描述

  1. 最短路径、图直径
    最短路径:最短距离
    图直径:两两结点最短路径最大值
  2. 中心性
    度中心性:Ndegreen−1{N_{degree}\over{n-1}}n1Ndegree
    特征向量中心性:A∗x=λ∗xA*x=\lambda*xAx=λx
    中介中心性:经过该节点的最短路径其余两两节点的最短路径{经过该节点的最短路径}\over{其余两两节点的最短路径}
    连接中心性:n−1节点到其他节点最短路径之和{n-1}\over{节点到其他节点最短路径之和}n1

网页排序算法

(1)PageRank:类似水流的均分排序法
在这里插入图片描述
(2)HITS:
在这里插入图片描述

Netwokx代码

  1. 定义:pd.DataFrame()
    定义起点、终点、权三个数列
    nx.from_pandas_edgelist()
  2. 度:nx.degree()
  3. 连通分量:nx.connected_components()
  4. 图直径:nx.diameter()
  5. 度中心性:nx.degree_centrality()
  6. 特征向量中心性:nx.eugenvector_centrality()
  7. 中介中心性:nx.betweens_centrality()
  8. 连接中心性:nx.closeness_centrality()
  9. nx.pagerank()
  10. nx.hits()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值