CNN卷积神经网络

CNN包括LeNet、AlexNet、VGG、GoogleNet、ResNet,卷积过程中空间结构特性被忽略。

全连接层用于分类任务的输出层。全连接层的每个神经元都与前一层的所有神经元相连,因此它需要一个固定长度的输入向量。这个输入向量的长度对应了全连接层的神经元个数,如果输入向量的长度不固定,那么全连接层的权值参数个数也将不固定,这会导致网络结构的不稳定和训练过程的复杂性增加。

全连接层的一个关键限制是它们需要接收固定大小的输入。为了解决这个问题,通常在卷积层和全连接层之间引入了一个称为“展平”(Flatten)的操作。

LeNet

应用于图像分类,手写数字识别。难以处理大尺寸图片。

尺寸通道数
输入图像32*321
卷积层28*286
池化层14*146
卷积层10*1016
池化层5*516
卷积层1*1120

AlexNet

为了防止过拟合,AlexNet 引入了数据增强和 Dropout 技术。

VGG

堆叠多个3*3的卷积核来代替大尺度卷积核(目的:减少所需参数)。VGG模型的成功证明了增加网络的深度,可以更好的学习图像中的特征模式。

GoogLeNet 分类任务

由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核大小来提取特征就显得比较困难了。空间分布范围更广的图像信息适合用较大的卷积核来提取其特征,而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GoogLeNet提出了一种被称为Inception模块的方案。

ResNet分类识别

残差网络ResNet解决增加网络的层数之后,训练误差往往不降反升的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值