一.cross_decomposition
1.简介:
该模块用于进行"交叉分解"(cross decomposition)
2.使用:
"典型相关分析"(Canonical Correlation Analysis;CCA):class sklearn.cross_decomposition.CCA([n_components=2,scale=True,max_iter=500,tol=1e-06,copy=True])
#参数说明:
n_components:指定要保留的组件数;为int
scale:指定是否缩放数据;为bool
max_iter:指定NIPALS内部循环的最大迭代次数;为int
tol:指定最小误差(若误差小于该值,则停止);为float>=0
copy:指定是否复制数据;为bool
######################################################################################################################
"偏最小二乘"(Partial Least Squares;PLS)转换与回归:class sklearn.cross_decomposition.PLSCanonical([n_components=2,scale=True,algorithm='nipals',max_iter=500,tol=1e-06,copy=True])
#参数说明:其他参数同class sklearn.cross_decomposition.CCA()
algorithm:指定用于估计"互协方差矩阵"(cross-covariance matrix)的第1个奇异向量的算法;为"nipals"/"svd"
######################################################################################################################
偏最小二乘回归:class sklearn.cross_decomposition.PLSRegression([n_components=2,scale=True,max_iter=500,tol=1e-06,copy=True])
#参数说明:同class sklearn.cross_decomposition.CCA()
######################################################################################################################
偏最小二乘"奇异值分解"(Singular Value Decomposition;SVD):class sklearn.cross_decomposition.PLSSVD([n_components