机器学习 装袋算法与随机森林

本文深入探讨了机器学习中的装袋算法及其在回归和分类问题中的应用,详细介绍了装袋算法的概念、步骤及优缺点。接着转向随机森林,阐述了随机森林的基本原理、投票机制,包括简单投票和贝叶斯投票,并分析了随机森林的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.装袋算法
1.概述
(1)概念:

"自举聚集算法/装袋算法"(Bootstrap Aggregating;Bagging)1种团体学习算法,最初由Leo Breiman于1996年提出.该算法可与其他分
类/回归算法结合,提高其准确率/稳定性并通过降低结果的方差来避免过拟合.其基本想法是分别训练几个不同的模型,然后让各模型对测试样本的
结果进行投票/取平均值,从而决定最终的预测结果,即进行"模型平均"(Model Averaging)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值