1 服务化原则
当代码规模超出小团队的合作范围时,就有必要进行服务化拆分了,包括拆分为微服务架构、小服务(MiniService)架构,通过服务化架构把不同生命周期的模块分离出来,分别进行业务迭代,避免迭代频繁模块被慢速模块拖慢,从而加快整体的进度和稳定性。同时服务化架构以面向接口编程,服务内部的功能高度内聚,模块间通过公共功能模块的提取增加软件的复用程度。分布式环境下的限流降级、熔断隔仓、灰度、反压、零信任安全等,本质上都是基于服务流量(而非网络流量)的控制策略,所以云原生架构强调使用服务化的目的还在于从架构层面抽象化业务模块之间的关系,标准化服务流量的传输,从而帮助业务模块做基于服务流量的策略控制和治理,不管这些服务是基于什么语言开发的。
2 弹性原则
大部分系统部署上线需要根据业务量的估算,准备一定规模的机器,从提出采购申请,到供应商洽谈、机器部署上电、软件部署、性能压测,往往需要好几个月甚至一年的周期;而这期间如果业务发生变化了,重新调整也非常困难。弹性则是指系统的部署规模可以随着业务量的变化自动伸缩,无须根据事先的容量规划准备固定的硬件和软件资源。好的弹性能力不仅缩短了从采购到上线的时间,让企业不用操心额外软硬件资源的成本支出(闲置成本),降低了企业的 IT 成本,更关键的是当业务规模面临海量突发性扩张的时候,不再因为平时软硬件资源储备不足而“说不”,保障了企业收益。
3 可观测原则
今天大部分企业的软件规模都在变大,原来单机可以对应用做完所有调试,但是在分布式环境下需要对多个主机上的信息做关联,才可能回答清楚服务为什么宕机、哪些服务违反了其定义的 SLO、目前的故障影响哪些用户、最近这次变更对哪些服务指标带来了影响等等,这些都系统具备更强的可观测能力。可观测性与监控、业务探活、APM 等系统提供的能力不同,前者是在云这样的分布式系统中,主动通过日志、链路跟踪和度量等手段,让一次 APP 点击背后的多次服务调用的耗时、返回值和参数都清晰可见,甚至可以下钻到每次三方软件调用、SQL 请求、节点拓扑、网络响应等,这样的能力可以使运维、开发和业务人员实时掌握软件运行情况,并结合多个维度的数据指标,获得前所未有的关联分析能力,不断对业务健康度和用户体验进行数字化衡量和持续优化。
4 韧性原则
当业务上线后,最不能接受的就是业务不可用,让用户无法正常使用软件,影响体验和收入。韧性代表了当软件所依赖的软硬件组件出现各种异常时,软件表现出来的抵御能力,这些异常通常包括硬件故障、硬件资源瓶颈(如 CPU/ 网卡带宽耗尽)、业务流量超出软件设计能力、影响机房工作的故障和灾难、软件 bug、黑客攻击等对业务不可用带来致命影响的因素。 韧性从多个维度诠释了软件持续提供业务服务的能力,核心目标是提高软件的 MTBF(Mean TimeBetween Failure,平均无故障时间)。从架构设计上,韧性包括服务异步化能力、重试 / 限流 / 降级 /熔断 / 背压、主从模式、集群模式、AZ 内的高可用、单元化、跨 region 容灾、异地多活容灾等。
5 所有过程自动化原则
技术往往是把“双刃剑”,容器、微服务、DevOps、大量第三方组件的使用,在降低分布式复杂性和
提升迭代速度的同时,因为整体增大了软件技术栈的复杂度和组件规模,所以不可避免的带来了软件交付的复杂性,如果这里控制不当,应用是无法体会到云原生技术的优势的。通过 IaC(Infrastructureas Code)、GitOps、OAM(Open Application Model)、Kubernetes operator 和大量自动化交付工具在 CI/CD 流水线中的实践,一方面标准化企业内部的软件交付过程,另一方面在标准化的基础上进行自动化,通过配置数据自描述和面向终态的交付过程,让自动化工具理解交付目标和环境差异,实现整个软件交付和运维的自动化。
6 零信任原则
零信任安全针对传统边界安全架构思想进行了重新评估和审视,并对安全架构思路给出了新的建议。其核心思想是,默认情况下不应该信任网络内部和外部的任何人 / 设备 / 系统,需要基于认证和授权重构访问控制的信任基础,诸如 IP 地址、主机、地理位置、所处网络等均不能作为可信的凭证。零信任对访问控制进行了范式上的颠覆,引导安全体系架构从“网络中心化”走向“身份中心化”,其本质诉求是以身份为中心进行访问控制。零信任第一个核心问题就是 Identity,赋予不同的 Entity 不同的 Identity,解决是谁在什么环境下访问某个具体的资源的问题。在研发、测试和运维微服务场景下,Identity 及其相关策略不仅是安全的基础,更是众多(资源,服务,环境)隔离机制的基础;在员工访问企业内部应用的场景下,Identity 及其相关策略提供了灵活的机制来提供随时随地的接入服务。
7 架构持续演进原则
今天技术和业务的变化速度非常快,很少有一开始就清晰定义了架构并在整个软件生命周期里面都适用的,相反往往还需要对架构进行一定范围内的重构,因此云原生架构本身也应该和必须是一个具备持续演进能力的架构,而不是一个封闭式架构。除了增量迭代、目标选取等因素外,还需要考虑组织(例如架构控制委员会)层面的架构治理和风险控制,特别是在业务高速迭代情况下的架构、业务、实现平衡关服务化架构是云时代构建云原生应用的标准架构模式,要求以应用模块为颗粒度划分一个软件,以接口契约(例如 IDL)定义彼此业务关系,以标准协议(http、gRPC 等)确保彼此的互联互通,结合 DDD(领域模型驱动)、TDD(测试驱动开发)、容器化部署提升每个接口的代码质量和迭代速度。服务化架构的典型模式是微服务和小服务(Mini Service)模式,其中小服务可以看做是一组关系非常密切的服务的组合,这组服务会共享数据,小服务模式通常适用于非常大型的软件系统,避免接口的颗粒度太细而导致过多的调用损耗(特别是服务间调用和数据一致性处理)和治理复杂度。
通过服务化架构,把代码模块关系和部署关系进行分离,每个接口可以部署不同数量的实例,单独扩缩容,从而使得整体的部署更经济。此外,由于在进程级实现了模块的分离,每个接口都可以单独升级,从而提升了整体的迭代效率。但是也需要注意到,服务拆分导致要维护的模块数增多,如果缺乏服务的自动化能力和治理能力,会让模块管理和组织技能不匹配,反而导致开发和运维效率的降低。
系。云原生架构对于新建应用而言的架构控制策略相对容易选择(通常是选择弹性、敏捷、成本的维度),但是对于存量应用向云原生架构迁移,则需要从架构上考虑遗留应用的迁出成本 / 风险和到云上的迁入成本 / 风险,以及技术上通过微服务 / 应用网关、应用集成、适配器、服务网格、数据迁移、在线灰度等应用和流量进行细颗粒度控制。
(摘自《云原生架构白皮书》)