别让脏数据“毁了”你的AI:用 Python 优雅搞定数据清洗

别让脏数据“毁了”你的AI:用 Python 优雅搞定数据清洗

你可能听说过一句话:“Garbage in, garbage out.” 对 AI 来说,这不是玩笑,而是真相。

哪怕你调了最牛的 Transformer 模型、用了最尖端的 GPU,如果输入的是一堆“脏兮兮”的数据,那结果大概率也就是个“高级废话”。

作为一名经常和数据模型“打交道”的 Pythoner,我想聊聊另一个更真实的 AI 战场:数据清洗

今天咱不谈大模型、不讲花哨架构,就聊聊一个被很多人忽视、但至关重要的技能 —— 如何用 Python 优雅地做 AI 数据清洗


一、数据清洗到底是在“洗”什么?

数据清洗其实跟洗衣服差不多,脏的东西要处理干净,缺的东西要补,乱的东西要理顺。

常见的数据“脏乱差”包括:

  • 缺失值(NaN/null)
  • 异常值(如收入为 -999999)
  • 重复数据
  • 类型错误(字符串变数字、日期格式混乱)
  • 不规范文本(多空格、HTML标记、乱码等)
  • 语义歧义(“yes”、“Y”、“1” 是否是同一意思?)

AI 模型不是万能的,它吃进去的每一口数据,都可能变成偏差。


二、Python 是数据清洗的“瑞士军

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Echo_Wish

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值