别让脏数据“毁了”你的AI:用 Python 优雅搞定数据清洗
你可能听说过一句话:“Garbage in, garbage out.” 对 AI 来说,这不是玩笑,而是真相。
哪怕你调了最牛的 Transformer 模型、用了最尖端的 GPU,如果输入的是一堆“脏兮兮”的数据,那结果大概率也就是个“高级废话”。
作为一名经常和数据模型“打交道”的 Pythoner,我想聊聊另一个更真实的 AI 战场:数据清洗。
今天咱不谈大模型、不讲花哨架构,就聊聊一个被很多人忽视、但至关重要的技能 —— 如何用 Python 优雅地做 AI 数据清洗。
一、数据清洗到底是在“洗”什么?
数据清洗其实跟洗衣服差不多,脏的东西要处理干净,缺的东西要补,乱的东西要理顺。
常见的数据“脏乱差”包括:
- 缺失值(NaN/null)
- 异常值(如收入为 -999999)
- 重复数据
- 类型错误(字符串变数字、日期格式混乱)
- 不规范文本(多空格、HTML标记、乱码等)
- 语义歧义(“yes”、“Y”、“1” 是否是同一意思?)
AI 模型不是万能的,它吃进去的每一口数据,都可能变成偏差。