- 博客(1019)
- 资源 (6)
- 收藏
- 关注
原创 动态多目标进化算法:基于迁移学习的RMMEDA(Transfer Learning-based RMMEDA,Tr-RMMEDA)求解CEC2015,提供完整MATLAB代码
基于迁移学习的RMMEDA(Transfer Learning-based Regularity Model-based Multiobjective Estimation of Distribution Algorithm,TrRMMEDA)是2017年提出的一种基于迁移学习的动态多目标优化算法。
2025-06-15 20:32:24
856
原创 动态多目标进化算法:基于迁移学习的RMMEDA(Transfer Learning based RMMEDA,Tr-RMMEDA)求解CEC2015,提供完整MATLAB代码
TrRMMEDA(Transfer Learning-based Regularity Model-based Multiobjective Estimation of Distribution Algorithm)是2017年提出的一种基于迁移学习的动态多目标优化算法。
2025-06-15 20:23:10
753
原创 动态多目标进化算法:基于迁移学习的动态多目标遗传算法(Transfer Learning based NSGA-II,Tr-NSGA-II)求解CEC2015,提供完整MATLAB代码
基于迁移学习的动态多目标遗传算法(Transfer Learning based Dynamic Multiobjective non-dominated sorting genetic algorithm II ,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。
2025-06-14 22:55:06
674
原创 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
基于迁移学习的动态多目标遗传算法(Transfer Learning based Dynamic Multiobjective non-dominated sorting genetic algorithm II ,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。
2025-06-14 22:49:04
1187
原创 动态多目标进化算法:基于迁移学习的动态多目标粒子群优化算法(TrMOPSO)求解CEC2015,提供完整MATLAB代码
基于迁移学习的动态多目标粒子群优化算法(Transfer Learning based Dynamic Multiobjective particle swarm optimization,TrMOPSO)是一种经典的动态多目标进化算法。算法组合:将迁移学习技术与多目标粒子群优化算法相结合,旨在解决动态多目标优化问题。软件架构:基于 Tr-DMOEA 框架,通过调用 Tr-IPG 模块来生成初始种群,进而利用 MOPSO 算法进行优化操作。
2025-06-14 22:35:59
645
原创 动态多目标进化算法:基于迁移学习的动态多目标粒子群优化算法(TrMOPSO)求解IEEE CEC 2015,提供完整MATLAB代码
基于迁移学习的动态多目标粒子群优化算法(Transfer Learning based Dynamic Multiobjective particle swarm optimization,TrMOPSO)是一种经典的动态多目标进化算法。算法组合:将迁移学习技术与多目标粒子群优化算法相结合,旨在解决动态多目标优化问题。软件架构:基于 Tr-DMOEA 框架,通过调用 Tr-IPG 模块来生成初始种群,进而利用 MOPSO 算法进行优化操作。
2025-06-14 22:33:42
1175
原创 动态多目标进化算法:TrRMMEDA求解DF1-DF14,提供完整MATLAB代码
TrRMMEDA(Transfer Learning-based Regularity Model-based Multiobjective Estimation of Distribution Algorithm)是2017年提出的一种基于迁移学习的动态多目标优化算法。双目标问题(DF1-DF9):这些函数具有两个目标,用于测试算法在动态环境下的性能。三目标问题(DF10-DF14):这些函数具有三个目标,增加了优化的复杂性。这些测试函数设计了不同的动态特性,以评估动态多目标优化算法的性能。
2025-06-12 22:16:40
654
原创 动态多目标进化算法:TrRMMEDA求解CEC2018(DF1-DF14),提供完整MATLAB代码
TrRMMEDA(Transfer Learning-based Regularity Model-based Multiobjective Estimation of Distribution Algorithm)是2017年提出的一种基于迁移学习的动态多目标优化算法。双目标问题(DF1-DF9):这些函数具有两个目标,用于测试算法在动态环境下的性能。三目标问题(DF10-DF14):这些函数具有三个目标,增加了优化的复杂性。这些测试函数设计了不同的动态特性,以评估动态多目标优化算法的性能。
2025-06-12 21:51:47
1119
原创 动态多目标进化算法:MOEA/D-SVR求解DF1-DF14,提供完整MATLAB代码
基于支持向量回归预测器的MOEA/D(MOEA based on decomposition (MOEA/D) Assisted by a Support Vector Regression Predictor,MOEA/D-SVR)的基本思路是通过支持向量回归(SVR)模型对历史种群进行学习,预测生成新环境下的种群。MOEA/D-SVR是一种基于支持向量回归(SVR)的动态多目标进化优化算法,主要用于解决动态多目标优化问题(DMOPs)。
2025-06-12 21:39:27
711
原创 动态多目标进化算法:MOEA/D-SVR求解CEC2018(DF1-DF14),提供完整MATLAB代码
基于支持向量回归预测器的MOEA/D(MOEA based on decomposition (MOEA/D) Assisted by a Support Vector Regression Predictor,MOEA/D-SVR)的基本思路是通过支持向量回归(SVR)模型对历史数据进行学习,预测生成新环境下的解,将其与几种先进动态多目标优化算法进行对比,实验结果表明该算法具有很强的竞争力,但在求解某些特定类型动态多目标优化问题(DMOPs)时存在效果不佳的情况。
2025-06-12 21:30:25
949
原创 动态多目标进化算法:VARE - MOEA/D求解CEC2018(DF1-DF14),提供完整MATLAB代码
VARE - MOEA/D(Vector Autoregressive Evolution - Multi - Objective Evolutionary Algorithm based on Decomposition)是2023年提出的一种新型的动态多目标优化(DMO)算法,旨在有效处理随时间变化的多目标优化问题。它通过结合向量自回归(VAR)模型和环境感知超变异(EAH)策略,动态适应环境变化,预测新的 Pareto 最优解,并保持种群多样性。
2025-06-12 20:55:18
969
原创 动态多目标进化算法:种群预测策略(Population Prediction Strategy,PPS)求解DF1-DF14,提供完整MATLAB代码
种群预测策略(Population Prediction Strategy,PPS)是2013年提出的一种用于动态多目标进化算法(DMOEA)的预测策略,它利用历史信息预测新的种群,以快速适应环境变化。双目标问题(DF1-DF9):这些函数具有两个目标,用于测试算法在动态环境下的性能。三目标问题(DF10-DF14):这些函数具有三个目标,增加了优化的复杂性。这些测试函数设计了不同的动态特性,以评估动态多目标优化算法的性能。目标位置变化。
2025-06-12 20:09:46
764
原创 动态多目标进化算法:种群预测策略(Population Prediction Strategy,PPS)求解CEC2018(DF1-DF14),提供MATLAB代码
种群预测策略(Population Prediction Strategy,PPS)是2013年提出的一种用于动态多目标进化算法(DMOEA)的预测策略,它利用历史信息预测新的种群,以快速适应环境变化。双目标问题(DF1-DF9):这些函数具有两个目标,用于测试算法在动态环境下的性能。三目标问题(DF10-DF14):这些函数具有三个目标,增加了优化的复杂性。这些测试函数设计了不同的动态特性,以评估动态多目标优化算法的性能。目标位置变化。
2025-06-11 22:46:28
832
原创 动态多目标进化算法:SGEA(Steady-State and Generational Evolutionary Algorithm)求解DF1-DF14,提供完整MATLAB代码
是2017年提出的一种用于动态多目标优化(DMOPs)的混合进化算法,结合了稳态进化算法的快速跟踪能力和代际进化算法的良好多样性保持特性。算法框架初始化:创建初始父种群 P,并通过环境选择初始化精英种群 P 和存档 A。环境变化检测与响应:在每一代中,逐个检查种群成员是否发生变化。如果检测到变化,则启动变化响应机制。生成后代:通过选择父代个体并应用遗传操作(交叉和变异)生成新的后代个体。种群更新:将新生成的后代个体用于更新父种群 P 和存档 A。环境选择。
2025-06-11 22:05:11
1034
原创 动态多目标进化算法:SGEA(Steady-State and Generational Evolutionary Algorithm)求解CEC2018(DF1-DF14),提供完整MATLAB代码
是2017年提出的一种用于动态多目标优化(DMOPs)的混合进化算法,结合了稳态进化算法的快速跟踪能力和代际进化算法的良好多样性保持特性。算法框架初始化:创建初始父种群 P,并通过环境选择初始化精英种群 P 和存档 A。环境变化检测与响应:在每一代中,逐个检查种群成员是否发生变化。如果检测到变化,则启动变化响应机制。生成后代:通过选择父代个体并应用遗传操作(交叉和变异)生成新的后代个体。种群更新:将新生成的后代个体用于更新父种群 P 和存档 A。环境选择。
2025-06-11 22:01:58
934
原创 动态多目标进化算法:VARE(Vector Autoregressive Evolution)求解CEC2018(DF1-DF14),提供完整MATLAB代码
VARE(Vector Autoregressive Evolution)算法是2023年提出的一种新型的动态多目标优化(DMO)算法,旨在有效处理随时间变化的多目标优化问题。它通过结合向量自回归(VAR)模型和环境感知超变异(EAH)策略,动态适应环境变化,预测新的 Pareto 最优解,并保持种群多样性。VARE 的主要贡献在于提出了一个能够考虑决策变量之间相互关系的 VAR 模型用于种群预测,并引入 EAH 策略来动态调整种群多样性。双目标问题(DF1-DF9)
2025-06-11 21:37:09
842
原创 动态多目标进化算法:VARE(Vector Autoregressive Evolution)求解DF1-DF14,提供完整MATLAB代码
VARE(Vector Autoregressive Evolution)算法是2023年提出的一种新型的动态多目标优化(DMO)算法,旨在有效处理随时间变化的多目标优化问题。它通过结合向量自回归(VAR)模型和环境感知超变异(EAH)策略,动态适应环境变化,预测新的 Pareto 最优解,并保持种群多样性。VARE 的主要贡献在于提出了一个能够考虑决策变量之间相互关系的 VAR 模型用于种群预测,并引入 EAH 策略来动态调整种群多样性。双目标问题(DF1-DF9)
2025-06-11 21:20:16
816
原创 基于流形迁移学习的快速动态多目标进化算法(MMTL-MOEA/D)求解FDA1-FDA5和dMOP1-dMOP3,提供完整MATLAB代码
figureelseendhold onendfigureelseendhold onend%% 计算评价指标endfigurehold onhold onhold on。
2025-06-10 21:13:28
837
原创 2025最新智能优化算法:野燕麦优化算法(Animated Oat Optimization Algorithm, AOO),MATLAB代码
AOO是一种新型元启发式算法,模拟野燕麦种子的三种传播机制(自然扩散、吸湿滚动、遇阻推进)实现优化。该算法通过"种子分布-能量积蓄-滚动推进"耦合策略,平衡全局探索与局部开发能力,在无线传感网络定位及工程优化中表现优异。MATLAB代码验证了其在CEC2022测试函数上的收敛性和搜索轨迹,展现了强鲁棒性与应用潜力。
2025-05-25 21:16:30
1285
原创 基于密集型复杂城市场景下求解无人机三维路径规划的Q-learning 算法研究,提供完整MATLAB代码
在城市场景下,无人机的状态空间应能够全面描述其在三维空间中的位置和周围环境信息。将飞行空间划分为三维网格,每个网格点对应一个状态,用三维坐标 (x,y,z) 表示无人机的位置。同时,考虑到无人机需要感知周围障碍物的信息以避免碰撞,将附近障碍物的距离和方向等信息也纳入状态空间。
2025-05-10 13:33:29
1121
原创 基于城市场景下求解无人机三维路径规划的Q-learning 算法研究,提供完整MATLAB代码
在城市场景下,无人机的状态空间应能够全面描述其在三维空间中的位置和周围环境信息。将飞行空间划分为三维网格,每个网格点对应一个状态,用三维坐标 (x,y,z) 表示无人机的位置。同时,考虑到无人机需要感知周围障碍物的信息以避免碰撞,将附近障碍物的距离和方向等信息也纳入状态空间。
2025-05-10 13:22:53
718
原创 基于强化学习 Q-learning 算法求解城市场景下无人机三维路径规划研究,提供完整MATLAB代码
随着无人机在城市环境中的广泛应用,其三维路径规划问题日益受到关注。城市场景具有复杂多变的障碍物布局和严格的飞行安全要求,传统的路径规划算法往往难以满足实时性和最优性需求。本文提出了一种基于强化学习 Q-learning 算法的无人机三维路径规划方法,通过合理定义状态空间、动作空间和奖励函数,使无人机能够在城市场景中自主学习最优路径。实验结果表明,该算法能够有效避开障碍物,规划出较优的飞行路径,具有较高的成功率和适应性,为无人机在城市环境中的安全高效飞行提供了一种有效的解决方案。
2025-05-10 12:56:06
1204
原创 基于 Q-learning 的城市场景无人机三维路径规划算法研究,可以自定义地图,提供完整MATLAB代码
随着无人机在城市环境中的应用日益广泛,如物流配送、航拍测绘等,复杂的城市场景给无人机的路径规划带来了巨大挑战。传统的路径规划算法在三维空间中难以满足实时性和最优性要求,因此研究有效的无人机三维路径规划算法具有重要意义。Q-learning 算法作为一种强化学习方法,通过与环境的交互学习最优策略,为解决这一问题提供了新思路。本文详细阐述了基于 Q-learning 的无人机三维路径规划算法设计,包括状态空间定义、动作空间确定、奖励函数设计及算法实现步骤。通过城市场景仿真实验,验证了该算法的有效性
2025-05-10 12:38:29
838
原创 大规模超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
基于导航变量的多目标粒子群优化算法(Navigation variable-based multi-objective particle swarm optimization,NMOPSO)是2025年提出的一种用于无人机路径规划的先进算法,旨在生成满足无人机运动学约束的帕累托最优路径。该算法通过将路径规划问题建模为一个多目标优化问题,并利用粒子群优化(PSO)技术来寻找最优解。
2025-04-25 22:23:25
968
1
原创 高维多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
基于导航变量的多目标粒子群优化算法(Navigation variable-based multi-objective particle swarm optimization,NMOPSO)是2025年提出的一种用于无人机路径规划的先进算法,旨在生成满足无人机运动学约束的帕累托最优路径。该算法通过将路径规划问题建模为一个多目标优化问题,并利用粒子群优化(PSO)技术来寻找最优解。
2025-04-25 22:12:56
999
2
原创 动态多目标优化:基于CNN-BiLSTM定向改进预测的动态多目标进化算法(CNN-LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于CNN-BiLSTM定向改进预测的动态多目标进化算法(CNN-BiLSTM Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,CNN-BiLSTM-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimiza
2025-04-13 14:09:56
1091
1
原创 动态多目标优化:基于CNN-LSTM定向改进预测的动态多目标进化算法(CNN-LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于CNN-LSTM定向改进预测的动态多目标进化算法(CNN-LSTM Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,GRU-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,DIP-DM
2025-04-13 13:45:14
888
原创 动态多目标优化:基于门控循环单元网络定向改进预测的动态多目标进化算法(GRU-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于门控循环单元网络定向改进预测的动态多目标进化算法(Gated Recurrent Unit Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,GRU-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimiz
2025-04-12 23:05:14
847
原创 动态多目标优化:基于双向长短期记忆网络定向改进预测的动态多目标进化算法(BiLSTM-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于双向长短期记忆网络定向改进预测的动态多目标进化算法(Bi-directional Long Short-Term Memory Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,LSTM-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Mul
2025-04-12 22:49:53
1289
原创 动态多目标优化:基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于长短期记忆网络定向改进预测的动态多目标进化算法(Long Short-Term Memory Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,LSTM-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optim
2025-04-12 22:36:36
980
原创 动态多目标优化:基于广义回归神经网络定向改进预测的动态多目标进化算法(GRNN-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于广义回归神经网络定向改进预测的动态多目标进化算法(GRNN Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,GRNN-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,DIP-DMOEA
2025-04-12 21:22:07
760
原创 动态多目标优化:基于RBF神经网络定向改进预测的动态多目标进化算法(RBF-DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于RBF神经网络定向改进预测的动态多目标进化算法(RBF Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,RBF-DIP-DMOEA)是基于定向改进预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,DIP-DMOEA)的改
2025-04-12 21:08:11
946
原创 动态多目标优化:基于可学习预测的动态多目标进化算法(DIP-DMOEA)求解CEC2018(DF1-DF14),提供MATLAB代码
基于可学习预测的动态多目标进化算法(Learning-Based Directional Improvement Prediction for Dynamic Multiobjective Optimization,DIP-DMOEA)是2024年提出的一种动态多目标进化算法,核心在于利用神经网络学习环境变化模式,引导进化搜索。研究背景:近年来,采用预测策略的动态多目标进化算法在解决动态多目标优化问题时表现出良好性能,但多数算法仅适用于规则变化模式的问题,面对非线性相关等不规则变化模式时性能受限。
2025-04-12 20:43:27
1119
原创 动态多目标进化算法:基于知识转移和维护功能的动态多目标进化算法(KTM-DMOEA)求解CEC2018(DF1-DF14)
在实际工程和现实生活中,许多优化问题具有动态性和多目标性,即目标函数会随着环境的变化而改变,并且存在多个相互冲突的目标。传统的多目标进化算法在处理这类动态问题时面临着一些挑战,如收敛速度慢、难以跟踪动态变化的 Pareto 前沿等。因此,需要开发新的算法来有效地解决 DMOPs。
2025-04-12 20:16:32
761
原创 基于CNN-BiLSTM-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。
2025-04-10 21:59:15
1139
原创 基于CNN-LSTM-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。
2025-04-10 20:49:30
803
原创 基于CNN-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。
2025-04-10 20:31:01
977
原创 基于CNN-LSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。
2025-04-03 22:46:18
1032
原创 基于CNN-BiLSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
路径规划是移动机器人领域主要研究内容之一,移动机器人路径规划即机器人在所处环境下选择一条从起点到终点的无碰撞路径。传统路径规划方法过分依赖环境地图,随着深度学习(Deep Learning,DL)和强化学习(Reinforcement Learning,RL)的快速发展,深度强化学习(Deep Reinforcement Learning,DRL)算法广泛应用于移动机器人路径规划和避障。
2025-04-03 22:15:08
858
原创 基于烟花算法(Fireworks Algorithm,FWA)及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
烟花算法(Fireworks Algorithm,FWA)是一种受烟花爆炸产生火星启发的群体智能优化算法,由谭营教授等人于2010年提出。
2025-03-29 20:09:04
1282
SGEA(Steady-State and Generational Evolutionary Algorithm) 参考文献pdf
2025-06-11
贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)MATLAB代码
2025-02-16
基于肤色的RGB多人脸检测
2020-09-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人