WebPlotDigitizer图像取点软件/在线网页

记录一下WebPlotDigitizer的使用方法。

网上一搜就能搜到官网,本文也把网址放在最后了。

1 上传待处理图像

2 选择图像的类型

每个选项都有示例图,不一一解释了。选好后点击 calibrate
在这里插入图片描述

3 确定横纵坐标

3.1

上一步完成后,左边栏会自动跳到axes(即坐标轴)。如果要修改待处理的图,可以重新选择image(图像)进行修改。

按照顺序,在图像上依次点击x1 x2 y1 y2。屏幕右上角的放大图可以看自己点的准不准。选好后也可以用键盘上的上下左右进行微调

这里具体的值可以自己调整(看右手边红框内),比如我希望x1定位在0,x2定位在图上的6处,就把x2后面的“1”改成“6”
在这里插入图片描述

我选好以后就是这样的

在这里插入图片描述

3.2

skip rotation correction中文直译是跳过旋转矫正。应该是算法能够根据你定位的四个点判断图像是否有一定的倾斜。我觉得不用勾选比较好

3.3

ok之后点击右下角的calibrate

4

上一步完成后,左边一栏会自动跳转到datasets。

右边栏,分别是manual(手动) 和automatic(自动)。推荐先用自动(也就是系统自动选点)。
在这里插入图片描述

4.1 首先选择曲线

foreground就是前景,background就是背景。

选择foreground后点击旁边的笔(取色器),然后在图像上点击想要分析的那条曲线,就取到这个曲线的颜色了。

然后选择background,再次点击取色器,点击图像的背景,方便算法识别。

在这里插入图片描述

这是最最最简单的方法

4.2

选好曲线后,点击run,立马就有结果了。

当然也可以先选择要取点的区域,用box是画一个框,pen是自己涂抹,erase是把选中的部分区域去掉。

调整最下面的Δx和Δy可以调整取点的密度,这个值越小密度越高
在这里插入图片描述

4.3

上一步完成后,再手动调整一下个别的点。选择add(增加) adjust(调整)或者delete(删除)

在这里插入图片描述

5

处理好之后,就能在左边看到data points(点的数量),并进行查看(点击 view data)

在这里插入图片描述

5.1

注意这些点目前是随机排列的,要让它按照x轴或者y轴的顺序排,在右边sort by进行选择。

在这里插入图片描述

5.2

在最底下可以对数据进行导出。

在这里插入图片描述

6 网站

WebPlotDigitizer

<think>好的,我现在需要帮助用户了解如何使用getdata提图片的数据。首先,我需要确认用户提到的“getdata”具体指的是哪个工具或库,因为可能有多个工具使用相似的名字。比如,可能是指Python中的某个库,或者是一个特定的软件,比如GetData Graph Digitizer,这是一款常用于从图表图片中提数据的工具。 假设用户指的是GetData Graph Digitizer软件,我需要解释它的基本使用方法。步骤可能包括:导入图片、校准坐标轴、选择数据或区域、导出数据等。同时,用户可能想知道如何安装该软件,或者是否有替代工具,比如WebPlotDigitizer或Python的库如Pillow、OpenCV等。 另外,如果用户指的是编程中的某个getdata函数,可能需要具体说明是哪个库中的函数。例如,Pillow库中的Image模块有getdata方法,用于获图像的像素数据。这时候需要给出代码示例,说明如何加载图片并使用getdata提像素值。 需要考虑到用户可能的背景,可能是不熟悉编程的人,也可能是有一定技术基础的用户。因此,回答需要兼顾不同情况,先介绍常见的工具,再补充编程方法。同时,要确保步骤清晰,避免使用过于专业的术语,必要时给出示例代码或操作截图建议。 还需要验证自己的记忆是否正确,比如GetData Graph Digitizer的步骤是否准确,Pillow的getdata方法是否返回像素值的列表等。如果有不确定的地方,需要查证或建议用户参考官方文档。 最后,总结不同方法,帮助用户根据需求选择最适合的工具,并提醒可能的注意事项,比如图片清晰度对数据提的影响,或处理数据时的格式转换问题。</think>在数据处理领域,从图片中提数据主要有以下几种常见方式(以Windows平台为例): 一、使用专业软件GetData Graph Digitizer(适用于图表数据提) 1. 安装步骤: - 访问官网https://getdata-graph-digitizer.com下载试用版 - 安装后启动软件 2. 操作流程: (1) 文件 > Open Image 导入目标图片 (2) 设置坐标系: • 击"Set the scale"按钮 • 用鼠标左键击两个已知坐标并输入实际数值 • 例如先X轴0位置输入0,再X轴10位置输入10 (3) 数据提: • 自动追踪:Tools > Automatic Trace(适合曲线清晰的情况) • 手动:Tools > Point Capture 逐击采集 (4) 导出数据: • 菜单栏选择Data > Export Data • 保存为CSV或Excel格式 二、Python编程提(适合批量处理) 使用PIL库提像素级数据示例: ```python from PIL import Image import numpy as np # 加载图片 img = Image.open('chart.png') # 转换为灰度图 gray_img = img.convert('L') # 获像素矩阵 pixel_data = np.array(gray_img.getdata()).reshape(gray_img.size[1], gray_img.size[0]) # 输出前5行5列数据 print(pixel_data[:5, :5]) ``` 三、在线工具WebPlotDigitizer(免安装) 1. 访问 https://automeris.io/WebPlotDigitizer 2. 上传图片后,通过以下步骤操作: a) 选择坐标系类型(直角/极坐标) b) 标定3个基准建立坐标系 c) 使用自动检测或手动选 d) 导出JSON/CSV数据 注意事项: 1. 图片质量要求: - 分辨率建议不低于300dpi - 图表坐标轴需完整清晰 - 曲线与背景要有明显色差 2. 数据验证: - 提后需随机选3-5个人工核对 - 检查数据的连续性是否合理 3. 误差控制技巧: - 对同一曲线多次提平均值 - 使用亚像素精度算法(专业版功能) 不同场景推荐工具: • 科研论文图表提 → GetData Graph Digitizer • 网页截图快速解析 → WebPlotDigitizer • 批量处理大量图片 → Python+OpenCV组合方案 常见问题解决: Q:提的坐标值出现偏移 A:检查是否准确标定了坐标系,建议使用整数坐标校准 Q:自动追踪识别错误 A:调整Detection Settings中的颜色阈值(RGB差值设置15-30) 进阶技巧: - 在GetData中使用色彩过滤功能(Color Filter)分离重叠曲线 - 通过Python的scikit-image库实现边缘检测: ```python from skimage import filters edges = filters.sobel(pixel_data) # 用Sobel算子增强边缘 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值