[项目实战] 基于MFCC和CNN的语音情感识别系统

基于深度学习的语音情感识别系统

我们的网站是菜码编程
如果你对我们的项目感兴趣可以扫码关注我们的公众号,我们会持续更新深度学习相关项目。
在这里插入图片描述

1 项目概述

本项目是一个基于深度学习的语音情感识别系统,使用 PyTorch 实现。该系统能够从音频中识别 6种不同的情感状态:愤怒、恐惧、开心、中性、悲伤和惊讶。项目实现了完整的数据处理、模型训练和评估流程,并提供了友好的图形用户界面(GUI)进行实时预测。

无论是研究者还是开发者,都可以通过本项目快速上手语音情感识别任务,并根据自己的需求调整模型和参数。

1.1 数据集

本项目使用的数据集来自 百度AI Studio 的情感语音数据集。数据集包含以下信息:

  • 类别:生气、恐惧、开心、正常、伤心、惊讶,共6种类别。
  • 样本数量:每类50个样本,总计300条数据。
  • 格式:音频文件为 .wav 格式。

1.2 模型性能概述

模型特征类型准确率F1得分备注
ResNet18MFCC频谱图73.3%74.4%使用预训练权重
ResNet18原始波形80.0%78.0%不使用预训练权重

1.3 目录说明

|
|-- checkpoints/  # 保存训练好的模型
|   |-- <model_name>_<timestamp>
|   |   |-- plots/  # 保存训练过程中的图像
|   |   |-- results.txt  # 保存评价指标
|   |   |-- <model_name>_best.pth  # 保存最佳模型
|   |-- ...
|
|-- dataset/  # 划分后的数据集根目录
|   |-- train/ # 训练集
|   |   |-- <emotion>/
|   |   |   |-- <audio_file>.wav
|   |   |-- ...
|   |-- val/ # 验证集
|       |-- <emotion>/
|       |   |-- <audio_file>.wav
|       |-- ...
|
|-- wav # 原始音频数据集
|   |-- <emotion>/
|   |   |-- <audio_file>.wav
|   |-- ...
|
|-- dataset.py  # 数据集类
|-- models.py  # 模型定义
|-- process_data.py  # 数划分数据集
|-- README.md # 项目说明
|-- requirements.txt  # 依赖库
|-- SIMSUN.TTC  # 字体文件
|-- train.py  # 训练脚本
|-- ui.py  # 交互界面

2 环境配置

2.1 创建虚拟环境

建议使用 conda 创建虚拟环境以避免依赖冲突:

conda create -n audio_classification python=3.10
conda activate audio_classification

2.2 安装 PyTorch 及相关库

请根据 PyTorch 官方安装指南 安装适合自己硬件版本的 torchtorchvisiontorchaudio

2.3 安装依赖库

运行以下命令安装项目所需的其他依赖库:

pip install -r requirements.txt

3 运行说明

3.1 数据集划分

将原始数据集划分为训练集和验证集。运行以下命令:

python process_data.py

您可以通过命令行参数控制数据集根目录、验证集比例等。更多参数说明请参考文档 process_data.md。

3.2 训练模型

运行以下命令开始训练模型。您可以通过命令行参数灵活调整超参数。

基本运行(使用默认参数)
python train.py
调整模型和超参数

例如,使用 MFCC 频谱图作为输入特征,选择 ResNet34 模型,并启用预训练权重:

python train.py --use_mfcc --model spec_resnet34 --pretrained --batch_size 32 --epochs 50 --lr 0.0005 --scheduler

完整的参数说明请参考文档 train.md。

3.3 交互界面

运行以下命令启动图形用户界面,进行实时预测:

python ui.py

4 功能特点

  1. 完整的训练流程

    包含数据加载、模型训练、验证和测试的全流程,方便用户快速上手。

  2. 多种模型选择

    支持不同规模的 ResNet 模型(如 ResNet18、ResNet34),并支持原始音频和 MFCC 频谱图作为输入特征。

  3. 超参数控制

    用户可通过命令行参数灵活调整学习率、批量大小、训练轮数等超参数。

  4. 丰富的评估指标

    提供准确率、精确度、召回率、F1分数、混淆矩阵等评价指标,帮助用户全面评估模型性能。

  5. 自动绘图:

    • 训练和验证损失曲线
    • 准确率曲线
    • 精确度曲线
    • 召回率曲线
    • F1分数曲线
    • 混淆矩阵
    • PR曲线

5 结果展示

软件界面
混淆矩阵
损失曲线
准确率曲线
精确度曲线
召回率曲线
F1分数曲线
PR曲线

我们的网站是菜码编程
如果你对我们的项目感兴趣可以扫码关注我们的公众号,我们会持续更新深度学习相关项目。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值