【模型参数微调】最先进的参数高效微调 (PEFT) 方法

参数高效微调(PEFT)方法允许仅微调大型预训练模型的一小部分参数,降低计算和存储成本。通过与Transformers、Diffusers和Accelerate集成,PEFT便于训练和推理。本文介绍了如何使用PEFT库中的LoRA技术对模型进行微调,展示了加载和微调模型,以及加载PEFT模型进行推理的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

由于大型预训练模型的规模,微调大型预训练模型的成本通常高得令人望而却步。参数高效微调 (PEFT) 方法只需微调少量(额外)模型参数而不是所有模型参数,即可使大型预训练模型有效地适应各种下游应用。这大大降低了计算和存储成本。最近最先进的PEFT技术实现了与完全微调的模型相当的性能。

PEFT 与 Transformers 集成,可轻松进行模型训练和推理,与 Diffusers 集成,方便地管理不同的适配器,与 Accelerate 集成,用于大型模型的分布式训练和推理。

查看 PEFT 适配器 API 参考部分,了解受支持的 PEFT 方法列表,并阅读适配器、软提示和 IA3 概念指南,详细了解这些方法的工作原理。

快速入门

安装PEFT

从 pip 安装 PEFT:

pip install peft

加载和微调 

通过将基本模型和 PEFT 配置包装在 get_peft_model中,准备使用 PEFT 方法(如 LoRA)进行训练的模型。对于 bigscience/mt0-large 模型,您只训练了 0.19% 的参数!

from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
model_na
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大表哥汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值