0. 论文信息
标题:The One RING: a Robotic Indoor Navigation Generalist
作者:Ainaz Eftekhar, Luca Weihs, Rose Hendrix, Ege Caglar, Jordi Salvador, Alvaro Herrasti, Winson Han, Eli VanderBil, Aniruddha Kembhavi, Ali Farhadi, Ranjay Krishna, Kiana Ehsani, Kuo-Hao Zeng
机构:Allen Institute for AI、University of Washington
原文链接:https://arxiv.org/abs/2412.14401
代码链接:https://one-ring-policy.allen.ai/
1. 导读
现代机器人在形状、大小和用于感知环境并与之互动的传感器配置方面有很大差异。然而,大多数导航策略是特定于实施例的;使用一个机器人的配置学习到的策略通常不会优雅地推广到另一个机器人。即使是身体大小或相机视角的微小变化也可能导致故障。随着最近定制硬件开发的激增,有必要学习可以转移到其他实施例的单个策略,从而消除对每个特定机器人进行(重新)训练的需要。在本文中,我们介绍了RING(机器人室内导航通才),这是一种与实施例无关的策略,仅在大规模的不同随机初始化实施例的模拟中进行训练。具体来说,我们增加了AI2-托尔模拟器的能力,以实例化具有可控配置的机器人实施例,改变身体大小,旋转枢轴点和相机配置。在视觉对象-目标导航任务中,RING在真实未知的机器人平台(Stretch RE-1、LoCoBot、Unitree的Go1)上实现了稳健的性能,在模拟的5个实施例和真实世界的4个机器人平台上实现了平均72.1%和78.9%的成功率。
2. 引言
机器人实体形态多样且不断演进,以更好地适应新环境和新任务。这些实体形态的差异——包括尺寸、形状、轮式或腿式移动方式以及传感器配置的不同——不仅决定了机器人如何感知世界,还决定了它们如何在其中行动。具有宽视场(Fie