• 博客(186)
  • 收藏
  • 关注

原创 手把手实战:快速构建合同智能审查Agent

配置“模型供应商”,选择 “OpenAI-API-compatible”,输入申请到的 “API Key” 和 “URL” 后点击“保存”,如下图示例完成 “AlayaNew/DeepSeek-R1。至此,我们完成了合同智能审核Agent的构建,我们也可以在Dify中把这个智能体发布为API服务,这样企业其它应用如OA就可以通过API集成,在原合同流程中实现智能审核工作。该节点“输入变量”中,配置从“开始”节点中获取上传的文件,输出变量就是合同的内容,配置如下图。接下来我们开始创建智能体。

2025-04-21 13:52:18 2251

原创 企业应用大模型报告:如何应对变革,构建专属“我的AI”

在大模型时代,生态协作能力的重要性远超以往。针对高价值业务场景,建议和具有专业技能能力的供应商合作,采用 “开源大模型底座 + 企业私有数据” 进行领域微调,构建专属场景大模型,实现业务效率进一步提升 ,并通过 API 接口将模型能力深度耦合至核心业务系统,革新业务效率和客户体验。这一专属 AI 能力的核心要义,在于将前沿的大模型技术与企业独一无二的基因,即企业特有的数据资源、业务流程以及个性化的业务需求,深度且紧密地结合在一起,从而助力企业塑造独特的竞争优势,使其在激烈的市场竞争中脱颖而出。

2025-04-18 17:11:41 1696

原创 一站式解决Deepseek微调三大痛点:数据集、GPU资源、微调手册与源码

从上述微调结果可以明显看出,经过微调的模型在解决用户疑问方面表现更为出色,能够为用户提供更加精准和有效的指导。本实践成功地将先进的大模型技术与Aladdin组件相结合,有效应对了具体的行业挑战,展示了前沿技术在实际场景中的应用实例,实现了从理论到实践的重要跨越。通过这种方式,我们不仅为用户提供了处理复杂问题的新思路,还展示了如何利用这些先进技术解决实际问题,为各行各业带来了创新解决方案。

2025-03-31 15:16:50 1127

原创 大模型开发利器Aladdin加持,4小时亲手复刻DeepSeek Aha Moment!

Countdown 任务是一种类似"24点"的任务,玩家会拿到一组数字,使用"加减乘除"这四种基本语法运算法则,构造一个等于目标数字的等式,并且每个数字只能使用一次,例如:玩家拿到[2,12,25,56]这四个数字,目标是等式结果为55.1.整个训练过程大概需要4个小时,在./grpo_implement/logs/下有log,查看countdown_zero_rl_aha_moment_dist.log文件,可以看到训练的进度。在这两个文件中搜索"突然“,可以找到训练过程中出现的Aha moment。

2025-02-20 21:55:24 935

原创 免费体验,一键部署!Alaya NeW应用市场正式上线DeepSeek系列模型

openwebui:只允许修改env列表中的OPENAI_API_BASE_URLS属性的值,DeepSeek-R1和DeepSeek-V3不要修改,DeepSeek其他模型,要跟modelName保持一致。借助 Alaya NeW算力云服务 提供的强大GPU资源,您可以轻松实现DeepSeek模型在云端的推理服务部署,并根据实际需求灵活使用算力,为技术创新与科研探索提供高效支持!在部署DeepSeek应用时,不同的模型需要修改的values.yaml文件内容(下图的右侧可编辑部分)不同。

2025-02-12 17:19:48 727

原创 手把手实战:Flux Kontext Dev 开源,最强一致性图像编辑模型!

FLUX.1 Kontext 是 Black Forest Labs 推出的突破性多模态图像编辑模型,支持文本和图像同时输入,能够智能理解图像上下文并执行精确编辑。其开发版是一个拥有 120 亿参数的开源扩散变压器模型,具有出色的上下文理解能力和角色一致性保持,即使经过多次迭代编辑,也能确保人物特征、构图布局等关键元素保持稳定。

2025-07-03 17:01:02 757

原创 手把手实战:零基础教程!照片一键生成科目三

Magic Animate 是一个基于扩散模型的人像动画框架,由新加坡国立大学的 Show Lab 和字节跳动团队开发。它可以从单张图片和一个动作视频中生成动画视频。这个工具在保持时间一致性、忠实保留参考图像以及显著提高动画真实感方面表现出色。

2025-06-27 14:26:57 389

原创 人工智能三Deep:三大“Deep”力量如何共塑AI黄金时代

从长远来看,这将被证明是一个高明的选择,它不仅立刻提高了深度学习的研究关注度,而且未来以此为基础的AI研究更是促进了整个AI技术的突破和行业的广泛应用。DeepMind 的技术路径一直偏爱强化学习,就像一位痴迷于“闯关学习法”的学霸,它最爱的练功房是各种游戏世界—从围棋棋盘到电子游戏,在这里不断试错、总结,练就了一套强大的“强化学习”本领。在谷歌这一代号“谷歌猫”的项目中,计算机系统通过自主学习1000万张未标注的YouTube图片,首次在没有人工干预的情况下识别出了“猫脸”这一概念。

2025-06-26 13:59:34 710

原创 全在这里了,小白也可以一文读懂的“世界模型”

我们先来回顾一下近期相关事件:6 月 18 日,Midjourney 发布首个 AI 视频生成模型 V1,标志其从静态图像创作向动态多媒体内容生产转型。V1 支持上传或用其他模型生成图像来生成视频片段,但有无法生成音频、时长限制等不足。Midjourney 透露长期目标是将多种技术融合为"世界模型",使用户能在动态生成的虚拟环境中自由探索。6 月 20 日,在华为开发者大会 2025 上,发布基于盘古多模态大模型的世界模型。该模型能为智能驾驶、具身智能机器人训练构建数字物理空间。

2025-06-25 16:57:01 912

原创 当AI“阅读”蛋白质天书:GPU+BioNeMo驱动医药革命

它通过提供针对特定领域优化的模型和工具,大幅加速了构建和调整生物分子AI最耗时且成本最高的阶段,并能轻松集成至任何基于GPU的计算环境中。就像ChatGPT理解人类语言,ESM-2、ESM-3等模型通过“阅读”数十亿蛋白质序列,学会了预测蛋白质结构、设计新药物——而这一切的关键,在于GPU算力与算法的双重突破。2024年诺贝尔化学奖授予蛋白质计算设计领域,背后正是一场静默的革命:全球实验室正在用GPU超算训练蛋白质大语言模型(pLMs),让AI从海量序列中破译生命密码。

2025-06-20 13:48:34 288

原创 小型企业“数据不怕哇”公司困境中的算力突围

在这场变革中,头部企业凭借雄厚的数据储备、强大的算力基建和顶尖的算法团队快速构建壁垒,而广大中小企业却面临三座横亘眼前的“AI大山”——数据匮乏、算力不足、算法门槛高。一台H200服务器买的话要200多万,租的话,一个月也得8万多,我们还得引进大模型技术人员,我们账上的钱够撑几天?她想起自己刚进公司时,被嘲笑"只会做Excel表格",如今公司也站在了同样的悬崖边,心里忐忑不安,公司不会要裁员吧?窗外,北京的夜空繁星点点,这家曾经濒临绝境的小公司,如今手握自己的AI未来。(深吸一口气):"这真是雪中送炭哪。

2025-06-19 13:57:16 703

原创 大模型蒸馏:从DeepSeek到李飞飞的50美元革命

2025年2月初,人工智能领域迎来两起标志性事件:中国公司DeepSeek发布的R1模型以“高性能+低成本”颠覆行业叙事,而“AI教母”李飞飞团队仅用和训练出媲美顶尖模型的s1-32B推理模型。这两项突破的核心技术均有一个关键词——。这一技术如何打破传统训练范式?其背后隐藏着怎样的科学逻辑与工程智慧?本文将深入解析。

2025-06-17 18:07:24 683

原创 手把手实战:零基础教程!LLaMA-Factory微调Qwen2-VL

具体实现过程看以下实战步骤。LLaMA-Factory微调Qwen2-VL实战步骤1、部署环境1)点击LLaMA-Factory镜像,准备开始部署2)点击配置&部署按钮3)填写自定义集群信息—>点击部署按钮4)部署完成之后,选择Notes.txt 显示登录地址5)设置微调参数最后参数会生成相关命令:以下是本次训练的核心参数与说明:为了让模型更贴近文旅领域的真实应用场景,本次微调采用了名为的图文对话数据集。该数据集由阿里达摩院团队开源发布。

2025-06-16 13:40:14 1116

原创 一文彻底读懂:英伟达GPU分类、架构演进和参数解析

每个CUDA核心只处理简单的数学运算(如浮点加减乘除),但通过集成数千个这样的核心,GPU能同时处理海量数据,速度远超CPU。显存位宽是GPU和显存之间的“数据通道宽度”,单位是bit(位),比如128bit、256bit、384bit等。位宽越大,GPU能同时读取的数据越多。其不断迭代的芯片架构与持续攀升的算力天花板,恰如一场自我突破的技术突围 —— 每一次架构升级,都是对行业算力边界的重新定义。在我们谈论算力的时候,常常会提到的半精度 (FP16)、单精度(FP32)、双精度(FP64)又是什么?

2025-06-13 10:34:45 1026

原创 不用公式!用生活例子讲透Transformer,大模型为何强大

比如,在句子“The animal didn't cross the street because it was too tired.”中,当他们看到“it”时,就会特别关注“animal”,因为“it”指的就是“animal”。当“自注意力”员工处理完一个词的信息后,他们就会对每个词的信息进行独立的、统一的加工,就像给每个词的信息做个“标准化处理”,让它们更容易被下一步使用。“透明度”更高(能看到它在看什么): 我们可以通过一些方法,看到模型在处理某个词时,它的“注意力”集中在输入句子的哪些词上。

2025-06-10 12:34:39 301

原创 奥特曼:大模型可靠性已过拐点,企业如何跑步入场?

它们也学得最快。谈及 OpenAI 企业业务的爆发式增长,他透露:「与一年前相比,我们与深度合作的头部企业交流时发现,促使它们加速落地的关键不再是『适应时间』,而是。

2025-06-09 12:54:44 673

原创 这个女人,如何让一众硅谷大佬夜不能寐

蓝色的线是电力的成本,绿色的线是计算机内存的成本,红色的线是 AI 推理的成本,很明显, AI 推理的成本降得最快,短短的两年就降了90%,直接跌到了地板上。不仅越来越多的公司在业绩电话会里讨论AI,而且,越来越多的公司实实在在地在使用AI,这张图描述的是微软云的 AI 使用量,在过去的一年, AI 的使用量翻了 5 倍。要知道Waymo的打车成本跟传统的网约车差不多,这说明哪怕价格一样,消费者也更喜欢无人驾驶的出租车,大家可以想一想为什么,把可能的原因写到本文的评论区里。这篇报告都有哪些内容值得关注呢?

2025-06-06 12:06:57 845

原创 手把手实战:一张图 + 一段音频,快速生成数字人视频!

你是否梦想用一张照片和一段音频,快速生成一个“会说话的数字人”?腾讯开源的项目正是为此而生。,通过输入一张人物照片和一段语音音频,就能自动生成嘴型精准、表情自然的视频片段,广泛适用于虚拟数字人、虚拟主播、AI 视频解说等场景。先给大家看看效果:👇,时长00:31数字人视频效果。

2025-06-04 16:11:39 1250

原创 AI4S:LLM驱动科研的三个层级 & 科研算力专项支持计划

最近香港科技大学团队在最新论文系统梳理了大语言模型(LLM)在科研各阶段的角色和价值,为理解 AI 从 “效率工具” 到 “自主代理” 的质变提供了理论框架,其提出的三层自主性模型(工具层→分析师层→科学家层)与全球顶尖实验室的实践形成呼应,勾勒出 AI 驱动科学革命的未来图景。在论文中,香港科技大学团队基于科学研究的六个核心阶段(观察与问题定义、假设发展、实验设计与执行、数据分析、结论验证、迭代完善),系统梳理了LLM在科研中从工具到自主代理的角色演进,揭示其在不同自主性层级的典型应用与挑战。

2025-05-29 11:11:02 722

原创 世界模型:AGI突破口?一文了解NVIDIA Cosmos 平台

Cosmos 赋予 AI “物理直觉”,Omniverse 为这种 “直觉” 提供了可以施展的舞台,使 AI 能够在虚拟环境中观察、分析和预测各种物理现象,进行各种尝试,不用担心造成损失,还能创造出大量带有物理规律的模拟数据,有助于提高 AI 的学习效率,让 AI 更好地理解物理世界中的物体关系、运动规律以及各种物理交互。这些数据来自于专有视频数据集和公开的互联网视频,通过精心筛选和处理,为模型提供了广泛的视觉体验,使其能够学习到不同场景下的物理规律和视觉特征。要实现AGI,需要先在“世界模型”取得突破。

2025-05-28 11:30:02 909

原创 手把手实战:如何用DeepSeek进行股票分析?

同时,我们具备大模型全栈技术能力,可协助您完成从模型训练、微调、部署、调优的全过程,助力构建安全、高效的AI系统。配置“模型供应商”,选择 “OpenAI-API-compatible”,输入申请到的 “API Key” 和 “URL” 后点击“保存”,如下图示例完成 “AlayaNew/DeepSeek-R1” LLM的配置。通过精心设计的提示词,可以激活模型中与特定任务相关的知识,使其在无需大规模微调的情况下,直接应用于下游任务。,任何技术都有局限性,审慎的态度和科学的投资框架始终是风险管理的核心。

2025-05-21 16:23:15 1604

原创 扎克伯格与纳德拉:开源模型蒸馏工厂如何重塑产品生产逻辑

这将意味着模型不再是“买来的”,而是“炼出来的”,开源模型的最大优势不再是参数量和GPU数量,而在可定制能力,只有少数人能玩的大模型将从“神坛”走向“普罗大众”,如果说基模型是油田,那么“蒸馏工厂”就是炼油厂,蒸馏出来的各种各样的模型就是千家万户的储油桶。2.释放协同潜力:实现一个老师模型到多个蒸馏模型之间的"一对多"以及多个老师模型蒸馏至一个模型的"多对一"的关系,这些蒸馏模型可与GitHub Copilot等工具或其他工作流组合,通过 MCP 服务器调用其他 AI Agent,释放大小模型协同的潜力。

2025-05-19 14:25:46 948

原创 将大模型幻觉降低90%,一个神奇的写作Agent

关注问题本质,关注如何解决问题,关注如何创造价值选择通过分层设计,实现高效内容生产。每一层都针对内容创作流程中的关键环节进行优化,形成完整的智能化解决方案。1.1 需求分析层作为系统的首要环节,采用NLP技术对用户输入进行深度解析。通过意图识别自动区分写作类型(如技术文档、营销文案、社交媒体内容等),并结合用户画像分析目标受众特征(年龄层、专业背景等)。系统内置需求模板,包含多类常见写作场景的标准化需求描述,确保输出精准匹配核心需求。

2025-05-15 15:51:25 1039

原创 vLLM vs SGLang:大模型推理框架,谁更适合你的需求?

总体而言,vLLM 在模型支持和应用生态方面具有优势,而 SGLang 在推理性能优化表现相对出色。性能上,SGLang 在顺序请求和并发请求场景中始终优于 vLLM。在并发负载下,差异尤其明显,SGLang 保持稳定吞吐量的能力凸显了其卓越的可扩展性和鲁棒性。这些发现表明,对于需要高并发和高效处理大量请求的应用程序来说,SGLang 是更好的选择。目前vLLM和SGLang的代码库已开始互相借鉴(如vLLM计划引入RadixAttention),但短期内仍是差异化竞争。

2025-05-13 16:18:29 652

原创 摩尔定律已死?一文带你看透摩尔定律如何穿越周期

Ollama是一个旨在简化在本地运行大型语言模型(LLM) 的轻量级推理工具,强调隐私保护、高性能和本地控制权。Xinference 支持多种推理引擎,Xinference需要单独安装支持的推理引擎,当满足模型格式为pytorch、gptq或者awq等条件时,Xinference 会自动选择 vLLM 作为引擎来达到更高的吞吐量。此外,Xinference 也支持 SGLang 后端,可根据具体的模型和应用需求,灵活选择使用 SGLang 进行推理,以充分发挥其在集群部署、大规模模型推理等方面的优势。

2025-05-12 14:59:51 859

原创 别让GPU摸鱼!榨干它!

通过在 L2 Cache 中缓存常用数据,可以减少 GPU 与主内存之间的数据传输量,提高数据访问效率,特别是在处理大规模数据和复杂计算任务时,L2 Cache 能够显著提高 GPU 的性能和响应速度,有助于提升整个图形处理和计算过程的流畅性。由于GPU利用率只是判断是不是有SM在执行状态,不考虑在执行状态的SM的数量,类似判断一个杯子中是不是有水,有一滴水也作数,十滴水也是一样,这样就不能精确到各个SM,无法在GPU内部实现优化,这样看,GPU利用率不太准,只是从GPU层面(宏观)笼统判断。

2025-05-09 11:35:25 883

原创 HF下载太慢?Alaya NeW的加速神器让你的模型“飞“起来!

Alaya NeW平台推出的DingoSpeed自托管镜像服务,旨在解决从Hugging Face下载模型和数据集速度缓慢的问题。通过本地化存储、智能分块调度和高效缓存,DingoSpeed显著提升了下载速度,优化了AI资源的全生命周期管理。用户只需设置环境变量并选择镜像站点,即可享受极速下载体验。实测数据显示,DingoSpeed在小模型和大模型下载速度上分别比传统方式快30%和100%以上,且内存占用更低、稳定性更高。DingoSpeed的核心技术包括本地镜像加速、并行分块下载和智能缓存复用,有效突破了

2025-05-09 10:56:59 812

原创 手把手实战:开源工具 Easy Dataset 三步生成数据集

例如,当我们尝试使用 DeepSeek 上传一份原始文档并通过提示词让模型生成QA数据集时,可以观察到上述缺陷的存在:即使重复操作,基于相同输入文件生成的结果依旧保持一致且质量有限。项目创建完成后,进行模型配置,这一步可以根据各自情况配置,配置也非常简单,选择“项目设置” -> “模型配置”,如下图。在某些专业性强的领域,如医疗健康或法律服务中,由于严格的隐私保护法规限制,公开可用的数据集相对稀缺,获取难度较大。选择“问题管理”,勾选生成的问题,选择“批量构造数据集”,过程仍需等待一段时间。

2025-05-08 11:19:22 3418 5

原创 Llama-Nemotron 超越 DeepSeek R1 成开源第一?

训练过程中,数据质量与多样性至关重要。像是在图 2 展示的科学推理(GPQA Diamond)、指令遵循(IFEval)、工具调用(BFCLv2)等测试场景下,LN-Ultra 的准确率远超同类开源模型,甚至比一些需要更高硬件配置的模型表现还要出色,彰显了它强大的实力。在 Puzzle 框架去除部分注意力层后,模型中会出现连续的 FFN 块,FFN Fusion 技术会将这些连续的 FFN 块替换为更少但更宽的 FFN 层,这些层可以并行执行,从而减少了顺序步骤,提高了计算利用率,显著降低了推理延迟。

2025-05-07 10:54:47 1075

原创 谁“偷”走了你的算力

摘要:一提到计量计费,相信大家第一时间想到了应该是生活中的水、电、燃气、通信费用,因为这些是我们习以为常又必不可少的部分,它们都已经有国家统一的标准表计进行计量计费,但算力资源特别是云计算环境下的算力资源算力影响因子颇多,难以用单一表计进行计量,应该如何科学且公平地计量计费,让用户不担心自己花钱租的算力资源被分配给别人使用呢?本文将从技术层面围绕 GPU、CPU、存储、网络四大核心智算资源,深入探讨其计量计费方案,尝试为智算资源的供需双方提供一个公平、合理、高效的资源使用和费用结算体系的建议。

2025-05-06 14:56:23 677

原创 除了堆GPU资源,还能如何卷出更高性能的大模型?

在 Llama2-70B 模型训练中实现秒级故障检测,分钟级定位并处理故障,分钟级训练恢复,减少了因故障导致的算力浪费,保障了 GPU 在训练过程中的持续高效运行,间接提升了 MFU。自DeepSeek R1问世后,让人们认识到了,不堆GPU资源,也可以通过各种优化手段训练出优秀的大模型,这些优化手段涉及到整个大模型训练技术体系的各个层面,如通信、AI平台、训练框架、算法等,这之中很多最终是落实到提高GPU浮点计算利用率上,本文深度解析一下如何提升GPU浮点计算利用率。

2025-04-29 10:49:39 1068

原创 大模型如何应对内容安全:原理、挑战与技术路径探讨

随着大语言模型(LLM)技术的广泛应用,从AI写作助手到智能客服、再到生成式内容平台(AIGC),AI 正以前所未有的速度深入人类社会的各个角落。然而,随之而来的内容安全问题也日益凸显:模型可能生成色情、暴力、歧视、谣言、政治敏感等不当内容,严重时甚至会引发法律与社会层面的风险。大模型的核心能力在于对语言的建模与生成,它并没有对“内容好坏”的本体认知。大模型的输出是概率驱动的,哪怕使用相同 Prompt,每次生成的内容也可能不同,极大增加了检测和预判的难度。

2025-04-28 14:13:29 1359

原创 大规模GPU集群:如何解决GPU掉卡的问题

从实践来看,这也是掉卡最容易导致的原因,它会触发GPU发生各种XID故障,需要重置后恢复,所以对制冷设备运行状态监控至关重要,要时刻监控机房动环温度数据和服务器温度传感数据,例如采用风冷方案的机房,一般机房长期温度在16℃-25℃,需设置合适的服务器告警温度,另外添加机柜挡板,优化空气流动等都是确保制冷效果有效手段。面对XID 48错误,如果后续又出现XID 63或64错误,为避免影响整个系统的运行,应先排空或隔离相关节点,等待当前任务平稳完成后,再对报错的GPU进行重置操作,尝试恢复其正常工作状态。

2025-04-24 15:26:06 1172

原创 AI推理平台哪家强

每个 Actor 作为模型推理的基本单元,可以将各种推理后端集成到 Actor 中,从而支持多个推理引擎和硬件。Xinference 支持多种推理引擎,Xinference需要单独安装支持的推理引擎,当满足模型格式为pytorch、gptq或者awq等条件时,Xinference 会自动选择 vLLM 作为引擎来达到更高的吞吐量。此外,Xinference 也支持 SGLang 后端,可根据具体的模型和应用需求,灵活选择使用 SGLang 进行推理,以充分发挥其在集群部署、大规模模型推理等方面的优势。

2025-04-23 14:19:10 1048

原创 一文读懂!大模型训练、微调、推理,GPU 选卡核心要点

近期,社群中不少小伙伴提出了想多了解一点大模型训练、微调、推理的相关知识,以及各个环节如何选择GPU,本文尝试对相关问题进行深度解析,本文介绍了大模型训练、微调、推理的基本原理及相关概念,以及它们之前的关系,大致介绍了训练、微调、推理的过程,以及主流大小GPU的相关参数,提出训练、微调、推理所采用的GPU的区别。只是后训练通常由模型提供商负责,会在出厂前进行预训练和后训练,以便把模型打造成可交付的状态,而微调这种后训练,一般由模型使用者(甲方自己的技术团队或技术厂商)进行,以便实现领域垂直大模型。

2025-04-22 09:38:29 1157

原创 3FS系列(三):从源码到实测:3FS USRBIO静态库的编译与性能体验

3FS 近期仍在持续被热议,在完成前篇所述的 3FS 元数据性能详测后,我们决定对 3FS 的另一项技术创新:FUSE与USRBIO并行使用开展编译与性能体验。我们发现,3FS 兼顾了 FUSE 的易用性与原生接口 USRBIO 的高速优势,在大部分场景中直接使用 FUSE 挂载,几乎「零改动」就能把 AI 任务迁移到 3FS,而对极限性能需求,则使用 USRBIO 的零拷贝、批量异步提交机制,大幅减少系统调用与网络交互开销,这对于大规模深度学习集群而言是一个值得参考与借鉴的设计。

2025-04-18 14:26:33 903

原创 3FS系列(二):3FS元数据性能深度拆解:那些在技术文档中找不到的实现细节

作为分布式存储领域的实践者,我们在深度测试3FS后既感受到技术突破的惊喜,也窥见了工程化落地的挑战。这种复杂的技术观感,或许正是开源项目从实验室走向生产环境的必经之路。若您在实践中有更精妙的参数调优方案,或是想深入探讨分布式存储的架构哲学,欢迎移步评论区 —— 或许下次我们就会一起探讨您提出的精彩观点。

2025-03-27 14:04:44 982

原创 3FS系列(一):存储新纪元的开篇——3FS编译调优与部署的工程实践

区别于过往巧妙算法的开源库,3FS 是完整的涉及多种节点、结合多种外部节点的高速并行文件系统,其代码结构清晰、模块间解耦程度高,充分展现了 DeepSeek 工程师对复杂工程的驾驭能力。作为人工智能基础软件方向的前沿力量,九章云极的研发大咖们近期也都在热议3FS,但我们今天不讨论3FS本身的产品设计,而是尝试借助我们存储方向的专业知识一步步抽丝剥茧、为大家手把手教学AGI时代需要什么样的存储系统以及存储主要的应用场景,并提供一些存储系统编译和部署的过程中的技巧和思路,希望能起到抛砖引玉的作用。

2025-03-14 15:49:27 1780

原创 科研领域新成果:九章云极DataCanvas联合团队发布R1复现以及改进技术

该研究论文表明,在已接近性能巅峰的蒸馏模型上,通过该强化学习训练方法也可以大幅提升AIME 2024的准确率,这一研究结果将极大促进正在运行中的较大模型的回复长度和推理准确性。这个方案完整开放了从模型训练到推理部署的全链路工程代码,同步公开实践验证过的技术经验与调优策略,为开发者提供可直接部署的工业化级大模型训练框架。研究结果公布,在Alaya NeW中采用on-policy 学习策略是成功的关键因素,其将DeepSeek背后的基于规则的强化学习方法加以微调,充分探索了相关的超参数设置以及训练技巧。

2025-03-13 13:53:52 567

原创 当中国“智算心跳”与全球共振:九章云极DataCanvas首秀MWC 2025

"九章云极DataCanvas公司高级副总裁黄北宁表示,"当算力成为数字时代的‘血液’,它的心跳不应只属于巨头——东南亚初创公司的模型训练、中东开发者的轻量化推理,无论何种规模的AI创新同样需要强劲的算力脉搏。战鼓已擂,九章云极DataCanvas公司将继续聚焦于为全球企业提供领先的“算法+算力”一体化AI服务,让算力流动打破地域边界,让AI创新火花在云端共生。九章云极DataCanvas公司此次展出的算力包产品,按算量计费,以度(DCU)为标准化计量单位,内置开箱即用的大模型工具链,并。

2025-03-07 17:24:41 1076

AutoML技术白皮书-《引入AutoML破局企业智能》

九章云极DataCanvas联合全球知名的研究机构IDC中国重磅发布《引入AutoML,破局企业智能白皮书》,探讨AutoML创新应用的新未来

2022-10-27

首个ModelOps技术白皮书-《ModelOps技术应用及趋势白皮书》

业内首个ModelOps白皮书由九章云极DataCanvas撰写发布,白皮书聚焦 ModelOps 技术应用及未来趋势,对 ModelOps 平台的主要功能、关键技术及平台应用进行详细剖析 

2022-10-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除