在当今数字化时代,人工智能(AI)的发展可谓日新月异。✨从最初的简单算法到如今功能强大的 AI 大模型,其应用领域不断拓展,涵盖了医疗、金融、教育、娱乐等几乎所有行业。而在这一迅猛发展的背后,算力起着至关重要的支撑作用。💡可以说,算力已经成为了推动 AI 技术进步的核心动力,正如电力之于工业革命一样,是 AI 时代不可或缺的 “新引擎”。
近年来,随着生成式 AI 如 ChatGPT 的爆火,市场对算力的需求呈现出井喷式增长。各大科技巨头纷纷加大在算力领域的投入,不断提升自身的算力水平。与此同时,各种算力服务平台也如雨后春笋般涌现,试图在这片充满机遇的市场中分得一杯羹。💎在众多的算力服务平台中,GPUGEEK 以其独特的优势逐渐崭露头角,为广大 AI 开发者和中小企业提供了一种高效、便捷且经济实惠的算力解决方案。
📣接下来博主会深入探索 GPUGEEK 平台,详细介绍其在算力市场中的定位、特点以及如何利用该平台实现 AI 大模型的在线搭建与使用,帮助读者全面了解这一平台的魅力与价值👍。
✨下面咱们一起进入GPUGEEK的世界吧👆!
二、GPUGEEK 平台概述
2.1 GPUGEEK 的定位与目标
GPUGEEK 定位于面向 AI 开发者和中小企业的 AI 赋能平台。在当前的 AI 生态系统中,AI 开发者和中小企业往往面临着诸多挑战。一方面,构建和维护自己的 AI 基础设施需要巨大的资金投入和专业的技术团队,这对于许多中小企业来说是难以承受的负担。另一方面,即使有了硬件设备,软件环境的搭建、模型的训练和优化等工作也需要耗费大量的时间和精力,这在一定程度上限制了 AI 技术在这些群体中的应用和发展。
GPUGEEK 旨在通过提供一站式的解决方案,帮助 AI 开发者和中小企业克服这些障碍。其目标是构建全球 GPU 算力网络,为用户提供高性价比的 GPU 算力、存储服务和社区服务,让用户能够在一个便捷的平台上,轻松地获取所需的算力资源,进行 AI 算法的研究和产品的实际应用,从而加速 AI 技术在各个领域的普及和创新。
2.2 平台的核心优势
2.2.1 高性价比的算力服务
在算力成本方面,GPUGEEK 具有显著的优势。平台采用弹性调度策略,用户可以根据自己的实际需求,灵活选择所需的算力资源,真正实现按需使用。这种方式避免了传统模式下用户为闲置算力买单的情况,大大降低了使用成本。例如,对于一些只需偶尔进行大规模模型训练的用户来说,在传统的算力租赁模式下,可能需要长期租用高配置的算力资源,即使在非训练期间,这些资源也处于闲置状态,造成了资金的浪费。而在 GPUGEEK 平台上,用户可以在训练时租用所需的算力,训练结束后即可释放资源,仅需支付实际使用的时长费用。
以一张 4090 显卡为例,在 GPUGEEK 平台上单小时的价格仅为 2.18 元,并且用户还可以稳定地租到 8 卡,这对于那些有性能要求同时预算有限的开发者、实验室和企业来说,无疑是一个极具吸引力的选择。此外,平台还提供了多种不同配置的算力选项,如 H100、A800 等优质算力也开放租赁,满足了不同用户在不同场景下的多样化需求。对于新手小白或者只是想体验一下模型部署的用户,平台还提供了单卡单小时 0.98 元的 RTX-A5000-24G 选项,该卡性能与 RTX-3090-24G 相近,且在大模型训练中性价比更高。同时,平台还为学生提供了 150 元免费代金券,进一步降低了用户的使用门槛。
2.2.2 便捷的使用体验
GPUGEEK 在使用便捷性方面做了大量的优化,真正做到了开箱即用。平台内置了丰富的开源框架,包括 TensorFlow、PyTorch、PaddlePaddle
等,这些都是目前 AI 开发中最常用的框架。同时,平台还集成了各种不同版本的 cuda,以满足不同框架和模型对 cuda 环境的要求。用户无需再花费大量时间去安装和配置这些复杂的软件环境,只需根据自己的需求在平台上进行简单选择即可。
此外,平台还提供了在线 IDE 工具,用户通过一键操作就能立即开启编程之旅。这种集成式的开发环境,使得用户可以在一个统一的界面中完成代码编写、调试、运行等一系列操作,大大提高了开发效率。例如,在传统的开发模式下,用户可能需要在本地安装多个软件工具,并且需要进行复杂的环境配置和软件之间的适配工作,这对于一些技术不太熟练的用户来说是一个巨大的挑战。而在 GPUGEEK 平台上,用户只需通过浏览器登录平台,即可直接使用在线 IDE 进行开发,无需担心本地环境的问题。
平台还支持通过 API 创建和删除 GPU 容器,实现模型部署的动态伸缩。这意味着用户可以根据实际业务需求,灵活调整模型部署的规模。当业务量增加时,可以快速增加 GPU 容器数量,提高模型的处理能力;当业务量减少时,则可以及时删除多余的容器,节省资源成本。这种动态伸缩的能力,使得用户能够更加高效地利用算力资源,提高业务的灵活性和适应性。
2.2.3 丰富的资源与服务
GPUGEEK 平台为用户提供了丰富的资源和服务,以满足其在 AI 开发过程中的各种需求。在数据集方面,平台内置了大量的开源数据集,这些数据集涵盖了图像、文本、语音等多个领域,用户可以直接使用这些数据集进行模型训练和测试,无需再花费大量时间和精力去收集和整理数据。同时,平台还支持用户分享自己的数据集,通过这种方式,促进了用户之间的资源共享和交流,使得整个平台的数据集资源不断丰富和完善。
在镜像与模型市场方面,平台同样具有独特的优势。个人用户可以在平台上创建各种开源大模型微调镜像及模型,分享自己的研究成果和实践经验。企业用户则可以利用平台的资源,在云上构建专属大模型,满足企业特定的业务需求。例如,对于一些具有特定业务场景和数据需求的企业来说,通过在 GPUGEEK 平台上构建专属大模型,可以更好地利用企业内部的数据,提高模型的准确性和实用性,从而为企业创造更大的价值。
此外,平台还提供了对象存储、NAS 存储等多种存储服务,满足用户对数据存储的不同需求。同时,未来平台还计划支持多云数据同步,进一步提高数据存取的便利性。在数据安全方面,平台采用了 runv 架构,实现内核隔离,确保用户数据的安全性。并且,平台拥有专业的运维保障团队,7 * 24 小时在线,随时为用户提供技术支持和问题解决服务,让用户使用起来更加安心、放心。
2.3 与其他平台的差异化比较
与传统的云计算厂商相比,GPUGEEK 的专业性和针对性更强。传统云计算厂商虽然提供了广泛的云计算服务,但在 AI 领域的专业性上相对较弱。它们往往需要用户自己进行大量的环境配置和技术选型工作,对于一些技术能力有限的 AI 开发者和中小企业来说,使用门槛较高。而 GPUGEEK 专注于 AI 领域,针对 AI 开发的特点和需求,提供了一站式的解决方案,大大降低了用户的使用难度。例如,在模型部署方面,传统云计算厂商可能需要用户具备深厚的云计算知识和经验,才能完成复杂的部署流程。而在 GPUGEEK 平台上,用户只需通过简单的操作,即可快速完成模型的部署,并且平台还提供了模型镜像缓存功能,加速了部署过程,提高了效率。
与专业的算力租赁公司相比,GPUGEEK 在服务的全面性上更具优势。专业的算力租赁公司主要提供算力租赁服务,在其他方面的支持相对较少。而 GPUGEEK 不仅提供高性价比的算力租赁,还提供了丰富的数据集、镜像与模型市场、存储服务、开发工具等一系列配套服务,形成了一个完整的 AI 开发生态系统。用户在平台上可以完成从数据获取、模型训练、模型部署到应用开发的整个流程,无需再依赖其他平台或服务。例如,在数据集获取方面,专业的算力租赁公司通常不会提供相关服务,用户需要自己去寻找和收集数据集。而在 GPUGEEK 平台上,用户可以直接使用平台内置的开源数据集,或者通过平台的数据集分享功能,获取其他用户分享的数据集,大大节省了时间和精力。
与其他新兴的 AI 基础设施平台相比,GPUGEEK 在用户体验和资源丰富度上表现突出。一些新兴平台虽然在某些方面具有创新性,但在用户体验和资源丰富度上可能存在不足。例如,部分平台可能在算力资源的种类和数量上有限,无法满足用户多样化的需求;或者在使用便捷性方面存在问题,导致用户在使用过程中遇到各种困难。而 GPUGEEK 通过不断优化平台的功能和服务,提高用户体验,同时不断丰富平台的资源,为用户提供了更加优质、全面的服务。例如,在用户反馈方面,GPUGEEK 建立了完善的用户反馈机制,及时收集用户的意见和建议,并根据用户需求对平台进行优化和改进。在资源丰富度方面,平台不断增加新的算力资源、数据集和模型,以满足用户日益增长的需求。
三、在 GPUGEEK 平台大模型训练推理
3.1 注册与账号设置
首先,用户需要访问 GPUGEEK 平台的官方网站(https://www.gpugeek.com/ ),在首页,右上角找到注册入口。输入手机号注册,用户输入有效的手机号码,点击获取验证码,将收到的验证码填入相应位置,设置好密码后,点击注册按钮,即可完成注册流程。
注册成功后,用户需要对账号进行一些基本设置。登录账号后,进入个人中心页面,在这里可以完善个人信息,如头像、昵称、所在行业等相关信息。注册成功后,系统会送通用券和模型调用券各十元,够咱们疯狂试错了!
3.2 算力资源选择与租赁
完成账号设置后,点击算力市场,进入算力资源选择页面。在该页面,用户可以看到平台提供的多种算力选项,包括不同型号的 GPU 设备(如 RTX 4090、H20-96G、Ascend-910B-64G、A40-48G、A100-PCIE-40G
等)以及对应的配置信息(如CPU品牌、网络区域等信息)和价格,价格支持最热和价格排序。
下面咱们选择RTX-A5000-24G,一个在这里算比较低配的配置,看看运行大模型的效果,性价比高,且性能不错,适合新手体验和模型部署。对于需要进行大规模模型训练或对性能有较高要求的用户,则可以选择多卡配置的算力资源,如 8 卡的 RTX 4090 或 H100 等。
在选择算力资源时,用户还需要考虑租赁时长。平台支持按量、按天、按月等多种租赁方式,用户可以根据自己的项目需求灵活选择。例如,如果只是进行一次短暂的模型训练任务,选择按小时租赁即可;如果是长期的项目开发,按月租赁可能更加经济实惠。当然,现在新上线了“转按需退费”功能,可以轻松转换计费模式。
确定好算力资源和租赁时长后,用户点击立即租赁按钮,进入订单确认页面,核对订单信息无误后,选择支付方式完成支付,即可成功租赁算力资源。
咱们这里选择的是按量租赁,0.8元/小时,咱们十块钱的券可以用十几个小时,相当哇塞了,可以疯狂体验一番了,📣友友们记得不用的时候要关机,要不然也是会收费的哟!
点击创建实例,即可完成自己的算力配置!接下来咱们配置系统默认的AI大模型镜像,我这里选择的是DeepSeekR1的大模型!(系统支持自己搭建大模型镜像,如果有点基础的可以选择github上自己的大模型进行应用!)
3.3 实时监控实例指标
实时监控实例的运行情况,精准分析,饱满测试!
3.4 模型训练推理
gz-cli 是由 GPUGEEK 平台专门为文件管理开发的命令行工具。该工具旨在为用户提供一种高效、便捷的方式来管理其在GPUGEEK平台上的数据。通过 gz-cli,用户能够执行多种操作,包括但上传、下载、查看文件列表以及管理文件。
该工具的开发基于对平台用户文件管理需求的深入理解,旨在简化文件的存取过程,提升用户处理大量数据时的效率。无论是数据备份、数据共享还是日常文件管理,gz-cli 都能提供灵活的命令行解决方案,以满足广泛的用户需求。
点击对应实例的 JupyterLab 即可自动打开 JupyterLab 控制台页面进行使用。
进入实例控制台,可以相关数据配置,进行自己的模型配置,数据训练等!
四、在 GPUGEEK 平台使用大模型
4.1 在线模型体验
每个模型均有自己的体验区界面,通过 Web 表单的形式填写模型请求参数,并通过界面展示输出结果。首次运行模型即可通过体验的方式查看模型的效果,并在后续稳定使用 API 方式调用。体验模型同 API 调用均会根据每次调用量(如 Tokens 数)或该次请求运行时长扣费。
这里面市场比较火的模型基本上都覆盖了,我这里用deepseek大模型为例!
点击左侧热门模型,选择 DeepSeek
界面deepseek模型在线应用,可以在线体验API
这里我发给DeepSeek一个指令:
我现在有点超重,怎么保持身材了?
DeepSeek给了一个比较全方位的解决方案,速度也是毫秒级响应,这点非常给力!
4.2 API 调用
您可通过多种方式请求每个模型的 API,包括 HTTP、Node.js、Python,针对文本对话类的官方 API,支持 OpenAI 格式兼容。API 调用需要使用 API Token,您可在 API Token 页面查看并管理您的 API Token。
4.2.1 使用 HTTP 方式调用 API
4.2.2 使用 Python 客户端调用 API
- 导入
requests
模块
- 设置请求
url
- 设置请求头
- 设置请求参数
- 发送 POST 请求
- 检查响应状态码并打印响应内容
4.2.3 使用 Node.js 客户端调用 API
- 导入
axios
模块和stream
模块
- 设置
API_KEY
变量
- 设置请求
URL
- 设置请求头
- 请求体数据
- 发送 POST 请求
4.2.4 OpenAI 兼容模式
- 安装
OpenAI
- 导入
OpenAI
模块
- 初始化
OpenAI
客户端
- 发送请求
五、总结
5.1 使用总结
通过对 GPUGEEK 平台的深入探索以及 AI 大模型在线搭建使用的详细介绍,我们可以看到,GPUGEEK 平台在算力市场中具有独特的优势和重要的价值。
在算力服务方面,GPUGEEK 提供了高性价比的解决方案,采用弹性调度策略,满足了不同用户在不同场景下的多样化需求。无论是新手开发者、科研团队还是中小企业,都能在平台上找到合适的算力资源,以较低的成本实现 AI 大模型的开发和应用。
在使用体验上,平台做到了开箱即用,内置丰富的开源框架和 cuda 版本,提供在线 IDE 工具,支持 API 动态伸缩模型部署,大大降低了使用门槛,提高了开发效率。即使是技术能力有限的用户,也能在平台上轻松完成从环境配置到模型部署的整个流程。
在资源与服务方面,平台提供了丰富的数据集、镜像与模型市场、多种存储服务以及专业的运维保障团队,形成了一个完整的 AI 开发生态系统。用户在平台上不仅可以获取所需的资源,还能与其他用户进行交流和分享,促进了 AI 技术的创新和发展。
通过实际案例分析,我们也看到了利用 GPUGEEK 平台搭建 AI 大模型在不同领域的成功应用,为企业和机构带来了显著的经济效益和社会效益。
5.2 未来可期
🥇随着 AI 技术的不断发展和算力需求的持续增长,GPUGEEK 平台也面临着新的机遇和挑战。在未来,平台可以进一步拓展算力资源的种类和规模,引入更先进的 GPU 设备和计算技术,以满足不断增长的高性能计算需求。
🌞在软件服务方面,平台可以加强与开源社区的合作,及时更新和优化内置的开源框架和工具,提供更多的开发模板和示例代码,帮助用户更快地入门和开发。同时,进一步完善模型市场和数据集分享功能,鼓励更多的用户上传优质的模型和数据集,丰富平台的资源生态。
🌞在数据安全和隐私保护方面,随着数据安全法规的日益严格和用户对数据隐私的关注度不断提高,平台需要加强数据安全技术的研发和应用,确保用户数据的安全性和隐私性。
🌞此外,GPUGEEK 平台还可以探索与更多行业的深度融合,拓展应用场景。例如,与物联网行业结合,为智能家居、智能工业等领域提供算力支持,实现设备数据的实时处理和智能决策;与元宇宙行业合作,助力虚拟世界的构建和渲染,提升用户的沉浸式体验。通过与不同行业的跨界合作,GPUGEEK 能够开拓更广阔的市场空间,推动 AI 技术在更多领域的落地应用。
📣GPUGEEK在算力支持和大模型应用这块几乎是行业领先,✨无论是界面体验感,还是实例流畅度,还是模型应用方面都是非常棒的,一次不错的AI使用体验👍!
写在最后:更多AI学习资料请添加学习助手领取资料礼包
视频学习资料:
从0开始开发超级AI智能体,干掉所有重复工作
- 基于字节的coze平台从0到1搭建我们自己的智能体
- 从coze到超级创业个体:2025是AI Agent大爆炸的元年!
- 搭建智能体的七大步骤:需求梳理、软件选型、提示工程、数据库、构建 UI 界面、测试评估、部署
- 你的智能体如何并行调用多个通用AI大模型?
- 实战案例:AI Agent提取小红书文案以及图像进行OCR文字识别并同步写入飞书多维表格
- 实战案例:AI Agent提取抖音爆款短视频链接中的文案,基于大模型和提示词完成符合小红书风格和作者特点的文案仿写
DeepSeek AI Agent +自动化助力企业实现 AI 改造实战
- DeepSeek 大模型的本地部署与客户端chatbox本地知识库
- 程序员的跨时代产品,AI 代码编辑器cursor深入浅出与项目构建
- 软件机器人工具影刀RPA工业化地基本使用
- 影刀RPA WEB自动化采集Boss直聘岗位信息并存储
- 影刀AI Power与DeepSeek 工作流构建影刀AI Agent
- AI HR实战:结合影刀RPA+DeepSeek AI智能体,实现智能自动招聘机器人
大模型技术+ 数字人+混剪造就副业王炸组合
- 数字人的概念与价值
- 当前数字人的时代背景
- 数字人的市场需求
- 数字人与自媒体的关系和发展路径
- 商业化数字人的变现之路
- 基于coze搭建数字人超级智能体
- 大模型技术+数字人+混剪=最强副业方向
- AI大模型与数字人造就3分钟获客300条精准线索
- AI副业接单渠道与流量变现
- 程序员开发的AI数字人实战