I(X,Y):信息传输率,表示信道实际传输的信息情况。
C:信道容量,表示信道的传信能力,即:最大的传输信息量。
信源与信道匹配:通过调整信源的输入分布,使得接受输出端获得的信息量达到或接近信道容量。
信源编码和信道编码都是为了使信源和信道达到匹配。信源编码一般会假设信道是无损信道(信道理想),目的使得H(X)尽可能大;而信道编码是在假设信源熵很大的情况下(信源理想)降低损失熵即:H(X|Y).I(X,Y)=H(X)-H(X\Y):从而信源编码和信道编码都可以增大:平均互信息。
目录
一:噪声信道的编码
上图是一个数字通信系统模型,信源编码的角色:一方面要使得输入端的消息适合信道的传输,用信道可识别的符号去表示;另一方面要压缩信源的冗余度,也就是用较少的符号数去传输消息。为了信息的安全传输会加入加密和解密的步骤,这个不在信息论的讨论中。然后是信道编码,目的是提高传输信道的抗干扰性,然后放到信道上去传输。方法是通过编码使得消息之间具备一些关联性,也就是降低误码率。
为了突出信道编码:(理想化信源编码后的结果)
信息序列:信源编码后输出的消息序列,每一个码元会携带较多的信息量。
码字:经过信道编码处理后的结果。
接收序列:码字在信道传输后的接受消息。
信息序列的估值:信道译码还原出来的估值。
噪声源:信道传输过程中出现的干扰以及噪声的影响。
错误图样:由于噪声源而产生的错误的信息序列。
信源编码的概念
目的:降低错误译码的概率
对象:理想的信息序列(码元间离散无记忆而且呈等概分布)
方法:在传输的信息码中按照一定的规律产生一些附加码元(不会增加信息量只是为了保证信息的有效性增加关联性),经信道传输,在传输中若码元出现错误,接收端利用编码规律发现码的内在相关性被破坏,从而按一定的译码规则自动纠正或发现错误,降低误码率。(检错或纠错)
实质:通过增加多余度,来增强相关性
关键(好的信道编码):
在保持一定传输信息速率的条件下,适当增加一定的码元多余度,使得接收端易于发现或纠正由于信道噪声产生的传输错误。
信道编码的物理过程:
上图第一个:指明信道编码器给信息序列按照一定的规律加入一些校验元,任务是检查收到的码字是否出错。关键:关联性的加入,怎么去描述规律性。
下图是香农的理解:(从抽象的数学意义出发)
输入是k维序列,输出是n维序列,由于加入校验元,n>k,若每一个码元有n种选择,则:输入空间为:,输出空间为:
.可以理解:从大的n重矢量的码字空间中选出
个n重矢量,把选出的矢量和输入的信息序列产生一一对应关系,也就是建立了一种映射(反映了编码规则)。(选码过程)
名词:许用码组(选取上码元要差异大),禁用码组(不产生错误是不会出现在接收端的。)
二:信道编码的分类
1):从接收端译码的工作方式的区分:
- 检错码:能发现错误的码
- 纠错码:不光能发现错误还能纠正错误的码
- 纠删码:能纠正删除错误的码(删除码:用额外的符号表示不确定的码元)
2)把纠错码进行细分:
卷积码和分组码的电路图示:
三: 信道译码及译码规则
回顾:信源译码比较简单,只要设计的信源编码是唯一可译码,则接收端的译码工作只要定位同步头,然后对比,匹配发送端的消息,从而就得到了唯一的译码结果。
对于信道编码而言,编码就是找到既有相关性又有较大差异的n维矢量作为码字,而信源译码具有多样性,译码方法的选择体现出不同译码性能,译码算法的复杂性也是译码可行的重要因素。
信道传输模式
误码率:取决于编译码方法和信道
比如:出错概率比正确传输大时,接收0以为1则可减少误码率。
信道的噪声噪小时则:误码率低
译码的本质:对码字进行分类的过程。
译码规则:
译码规则的常见准则
1)最大后验概率准则
MAP编码是一种最佳译码,对于每一个输出符号均译成具有最大后验概率的那个输入符号
,此时就能使得误码率最小。但是实际上后验概率是无法求出的,只能利用已知的先验概率
和信道转移概率
通过贝叶斯公式间接去求。
2) 最大似然译码准则
平均错误概率(误码率)
译码规则表
(例子)
四:香农第二定理
香农第二定理又叫:有噪信道编码定理
结论分析:码长n要足够长,码字M不能太大。
码长n足够大,也就是空间扩大,允许加入更多校验元,使得关联性提高,纠错能力增强,导致误码率减小;另一方面,码长足够大后,允许的信息位增加了,M也增大,所以在纠错能力不下降的前提下,信息传输率(信息位÷校验位)也增强了。
M不可以太大,因为M过大使得码字之间的差异变小,失去了关联性大的编码目的。
其他表述:
这个好理解:信息传输率不能超过信道的最大传信能力。类比:一台机器的处理工作数量不能超过其工作能力。
这一定理表明:一定条件下,信道的可靠性和有效性这个矛盾可以得到好的平衡
最后:这一定理的证明关键---随机编码(LDPC,按照信道输入的概率去选),码长趋于无穷,最大似然译码